若三角形的两内角α,β满足sinαcosβ
若三角形的两内角α,β满足sinαcosβ=0,则此三角形的形状是
sinα=sqr(2)sinβ,sqr(3)cosα=sqr(2)cosβ,且α,β均为三角形内角,求sinα,sinβ
若α是△ABC的内角,且sinα+cosα=2/3,判断这个三角形的形状
已知α是三角形的内角,且sinα+cosα=1/5.
已知α是三角形的内角,且sinα+cosα=15.
已知α、β是三角形的内角,且 cosα / sinβ =sqr(2),cotα / tanβ =sqr(3),求α
已知α是三角形的内角,且sinα+cosα=1/5.判断三角形的形状
三角函数 已知锐角αβγ满足sinα +sinγ=sinβ,cosα-cosγ=cosβ,则α-β的值为
已知锐角α、β、γ满足sinα+sinγ=sinβ,cosα-cosγ=cosβ 求α-β的值
已知α是三角形的一个内角且sinα+cosα=23,则此三角形是( )
已知α是三角形的一个内角,且sinα+cosα=2/3 则这个三角形是?
已知β是三角形的内角,且sinβ+cosβ=1/5 求tanβ的值