作业帮 > 数学 > 作业

在三角形ABC中 ∠A=90度 AB=AC D为BC中点 EF分别为AB,AC上的点 BE=AF证DEF是等腰直角三角形

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 09:29:03
在三角形ABC中 ∠A=90度 AB=AC D为BC中点 EF分别为AB,AC上的点 BE=AF证DEF是等腰直角三角形
证明:连接AD,
∵角A=90°,AB=AC,D为BC的中点
∴AD⊥BC,∠CAD=∠BAD=∠B=45°
∴AD=BD,
∵BE=AF
∴△DBE≌⊿DAF
∴ED=DF,∠ADF=∠BDE,
∴∠EDF=∠ADB=90º
∴三角形DEF是等腰直角三角形