已知F1,F2是椭圆C x^2/a^2+y^2/b^2=1(a>b)的两个焦点,P是C上一点,PF1、PF2为向量,且3
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 16:39:02
已知F1,F2是椭圆C x^2/a^2+y^2/b^2=1(a>b)的两个焦点,P是C上一点,PF1、PF2为向量,且3|PF1| |PF2|=4b^2,
已知F1,F2是椭圆C x^2/a^2+y^2/b^2=1(a>b)的两个焦点,P是C上一点,PF1、PF2为向量,且3|PF1| |PF2|=4b^2,求C的离心率的取值范围
已知F1,F2是椭圆C x^2/a^2+y^2/b^2=1(a>b)的两个焦点,P是C上一点,PF1、PF2为向量,且3|PF1| |PF2|=4b^2,求C的离心率的取值范围
左焦点F1(-c,0),右焦点F2(c,0),左准线为x=-a^2/c,右准线为x=a^2/c
根据椭圆的第二定义:动点到焦点的距离:动点到准线的距离=率心率e
其中,焦点和准线是对应的,也就是左焦点对应左准线,右焦点对应右准线.
因此:P点到左准线的距离为x+a^2/c,到右准线的距离为a^2/c-x
∴|PF1|=(x+a^2/c)e,|PF2|=(a^2/c-x)e
∴3|PF1| |PF2|=4b^2
=(x+a^2/c)e*(a^2/c-x)e
=[(a^2/c)^2-x^2]e^2
=[(c/e^2)^2-x^2]e^2
=a^2-x^2e^2
∴x^2=(a^2-4b^2)/e^2
∴0≤(a^2-4b^2)/e^2≤a^2
0≤a^2-4b^2≤c^2
0≤a^2-4(a^2-c^2)≤c^2
0≤-3a^2+4c^2≤c^2
3a^2≤4c^2≤c^2+3a^2
两边同除以a^2得
3≤4e^2≤e^2+3
解得
√3/2≤e≤1
其中e=1不符合椭圆定义,因此:
√3/2≤e<1
根据椭圆的第二定义:动点到焦点的距离:动点到准线的距离=率心率e
其中,焦点和准线是对应的,也就是左焦点对应左准线,右焦点对应右准线.
因此:P点到左准线的距离为x+a^2/c,到右准线的距离为a^2/c-x
∴|PF1|=(x+a^2/c)e,|PF2|=(a^2/c-x)e
∴3|PF1| |PF2|=4b^2
=(x+a^2/c)e*(a^2/c-x)e
=[(a^2/c)^2-x^2]e^2
=[(c/e^2)^2-x^2]e^2
=a^2-x^2e^2
∴x^2=(a^2-4b^2)/e^2
∴0≤(a^2-4b^2)/e^2≤a^2
0≤a^2-4b^2≤c^2
0≤a^2-4(a^2-c^2)≤c^2
0≤-3a^2+4c^2≤c^2
3a^2≤4c^2≤c^2+3a^2
两边同除以a^2得
3≤4e^2≤e^2+3
解得
√3/2≤e≤1
其中e=1不符合椭圆定义,因此:
√3/2≤e<1
已知F1,F2是椭圆C x^2/a^2+y^2/b^2=1(a>b)的两个焦点,P是C上一点,PF1、PF2为向量,且互
已知F1、F2是椭圆C:x^2/a^2+y^2/b^2=1的两个焦点,P为C上一点,且向量PF1与向量PF2的积为0.
已知F1 F2是椭圆C:X^2/a^2 y^2/b^2=1(a>b>0)的两个焦点,P为椭圆C上一点,且PF1⊥PF2.
已知F1,F2是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P为椭圆C上一点,且向量PF1垂直向
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点P(6,8),F1,F2为椭圆的两个焦点,且PF1⊥PF2
点p(3,4)是椭圆x^2/a^2+y^2/b^2=1上的一点,f1,f2为椭圆的两焦点,若pf1垂直pf2.1)椭圆的
已知点P(3,4)是椭圆X^2/a^2+y^2/b^2=1(a>b>0)上的一点,F1,F2为椭圆的两焦点,若向量PF1
【急!求过程!】已知椭圆x^2/a^2+y^2/b^2=1 上一点P(6,8),F1,F2为椭圆的焦点,且PF1⊥PF2
1.椭圆C:x^2/a^2 +y^2/b^2 =1(a>b>0)两个焦点为F1、F2,点P在椭圆C上,PF1⊥PF2,|
已知F1,F2分别是双曲线x^2/a-y^2/b=1的左右焦点,P为双曲线右支上的一点,如|PF1|^2/|PF2|^2
椭圆X^2/a^2+y^2/b^2=1的两焦点为F1、F2,P是椭圆上一点,而且PF1*PF2=0,则该椭圆离心率的取值
p是椭圆x∧2/a^2+y^2/b^2=1上一点,f1.f2是椭圆的两个焦点,求|pf1|·|pf2|的最大值和最小值