在平面直角坐标系中L1:y=-3/4x-2/3,L2:y=3/4x+2/3与x轴交点Ay轴交点B,抛物线y=2/3(x+
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 05:43:01
在平面直角坐标系中L1:y=-3/4x-2/3,L2:y=3/4x+2/3与x轴交点Ay轴交点B,抛物线y=2/3(x+3/4)2与y轴交于点D与
线AB交于点E.F.若DF//x轴F在x轴的右侧,过F作FH垂直x轴于点G,与直线L交于点H一条直线m(m不过三角形AFH的顶点)与AF交于点M,与FH交于点N,如果m既平分三角形AFH面积也平分周长,求直线m解析式.
(嘻,没有图,需要自己画)
线AB交于点E.F.若DF//x轴F在x轴的右侧,过F作FH垂直x轴于点G,与直线L交于点H一条直线m(m不过三角形AFH的顶点)与AF交于点M,与FH交于点N,如果m既平分三角形AFH面积也平分周长,求直线m解析式.
(嘻,没有图,需要自己画)
(j)设直线AB的解析式为y=kx+b,
将直线y=-
3
4
x-
3
r
与x轴、y轴交点分别为(-2,0),(0,-
b
2
),
沿x轴翻折,则直线y=-
3
4
x-
3
2
、直线AB与x轴交于同一点(-2,0),
∴A(-2,0),
与y轴的交点(0,-
3
2
)与点B关于x轴对称,
∴B(0,
3
2
),
∴
-2k+b=0
b=
3
2
,
解得k=
3
u
,b=
3
2
,
∴直线AB的解析式为y=
3
4
x+
3
2
;
(2)设平移后的抛物线C2的顶点为P(h,0),
则抛物线C2解析式为:y=
2
3
(x-u)2=
2
3
i2-
4
3
hx+
2
3
h2,
∴D(0,
2
3
h2),
∵2F∥x轴,
∴点F(2h,
6
6
h2),
又点F在直线AB上,
∴
2
3
h2=
3
4
•(2h)+
0
2
,
解得h1=3,h2=
-3
4
,
∴抛物线C2的解析式为y=
2
3
(x-3)2=
2
3
x2-4x+6或y=
2
3
x2+x+
9
8
;
(3)过M作MT⊥FH于T,MP交FH于N
∴Rt△MTF∽Rt△AGF.
∴FT:TM:FM=FG:GA:FA=3:4:5,
设FT=3k,TM=ik,FM=5k.
则FN=
1
2
(A1+1F+AF)-FM=16-5k,
∴S△MNF=
1
2
FN•MT=
(16-5k)jk
2
.
∵S△AFH=
1
2
FH•A8=
1
2
×12×8=48,
又S△MNF=
1
p
m△AF4.
∴
(16-5k)4k
2
=24.
解得k=
6
5
或k=2(舍去).
∴FM=6,FT=
18
5
,MT=
24
5
,GN=4,TG=
t2
5
.
∴M(
6
5
,
12
5
)、N(6,-4).
∴直线MN的解析式为:y=-
4
a
x+4.
将直线y=-
3
4
x-
3
r
与x轴、y轴交点分别为(-2,0),(0,-
b
2
),
沿x轴翻折,则直线y=-
3
4
x-
3
2
、直线AB与x轴交于同一点(-2,0),
∴A(-2,0),
与y轴的交点(0,-
3
2
)与点B关于x轴对称,
∴B(0,
3
2
),
∴
-2k+b=0
b=
3
2
,
解得k=
3
u
,b=
3
2
,
∴直线AB的解析式为y=
3
4
x+
3
2
;
(2)设平移后的抛物线C2的顶点为P(h,0),
则抛物线C2解析式为:y=
2
3
(x-u)2=
2
3
i2-
4
3
hx+
2
3
h2,
∴D(0,
2
3
h2),
∵2F∥x轴,
∴点F(2h,
6
6
h2),
又点F在直线AB上,
∴
2
3
h2=
3
4
•(2h)+
0
2
,
解得h1=3,h2=
-3
4
,
∴抛物线C2的解析式为y=
2
3
(x-3)2=
2
3
x2-4x+6或y=
2
3
x2+x+
9
8
;
(3)过M作MT⊥FH于T,MP交FH于N
∴Rt△MTF∽Rt△AGF.
∴FT:TM:FM=FG:GA:FA=3:4:5,
设FT=3k,TM=ik,FM=5k.
则FN=
1
2
(A1+1F+AF)-FM=16-5k,
∴S△MNF=
1
2
FN•MT=
(16-5k)jk
2
.
∵S△AFH=
1
2
FH•A8=
1
2
×12×8=48,
又S△MNF=
1
p
m△AF4.
∴
(16-5k)4k
2
=24.
解得k=
6
5
或k=2(舍去).
∴FM=6,FT=
18
5
,MT=
24
5
,GN=4,TG=
t2
5
.
∴M(
6
5
,
12
5
)、N(6,-4).
∴直线MN的解析式为:y=-
4
a
x+4.
在直角坐标系中有两条直线L1:y=3-x和L2:y=2x它们的交点坐标为P L1与X周为焦点A,与Y轴交点B,求点ABP
直线l1:3x-y+4=0与直线l2:2x-y+b=0的交点在y轴上,求b的值.
直线L1:2x-y+b=0与直线L2:3x-y-4=0的交点在x轴上,求b的值.
如图,在平面直角坐标系中,直线L1:y=x+1与L2:y=-3/4x+3交予点A,L1交x轴于点B,L2交x轴于点c,点
如图所示:平面直角坐标系中,直线L1.L2交与B点,且分别与y轴相交于A、C两点,其中L1:Y=2X+3,L2:Y=4/
平面直角坐标系在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是( )
在平面直角坐标系中,一次函数y=3x-2的图像与轴的交点坐标是
已知直线l1为y=2x+b,l2为y=3x-4的交点在x轴上,试求b的值.
在平面直角坐标系xOy中,抛物线y=-x2+x+m2-3m+2与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线
如图,在平面直角坐标系中,抛物线y=ax²+bx+c的对称轴为直线x=-3/2,抛物线与x轴的交点为A、B,
如图,在平面直角坐标系中,直线l1:y=-4x+84与x轴相交于点A,与直线l2:y=2/3x相交于点B,过点B平行于x
经过直线L1:3X+4Y-2=0与L2:2X+Y+2=0的交点