作业帮 > 数学 > 作业

如图,在等腰梯形ABCD中,对角线的交点是O,AB平行于DC,AC⊥BD,EF是中位线,CG是梯形的高,比较CG和EF的

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 18:38:12
如图,在等腰梯形ABCD中,对角线的交点是O,AB平行于DC,AC⊥BD,EF是中位线,CG是梯形的高,比较CG和EF的大小,
并证明你的结论..

相等
证明:
过点C做CM‖DB交AB平行线于点M
∵AB‖DC
∴四边形DBMC是平行四边形
∴BD=CM,CD=BM
∵AB‖DC,AD=BC
∴梯形ABCD是等腰梯形
∴AC=BD
∴AC=CM
∵CG⊥AB
∴CG是AM边上的中线
∵BD‖CM
∴∠ACM=∠DOC=90º
∴CG=½(AB+BM)=½(AB+BM)
∵EF是中位线
∴EF=½(AB+BM)
∴CG=EF