作业帮 > 数学 > 作业

数列bn的首项为1,且前n项和Sn满足Sn-S(n-1)=根号下Sn+根号下S(n-1) (n大于等于2),求bn的通项

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:48:21
数列bn的首项为1,且前n项和Sn满足Sn-S(n-1)=根号下Sn+根号下S(n-1) (n大于等于2),求bn的通项公式.
1.首先我认为题目的中的n-1是下标
2.=号左边变成bn,
3.在2的式子基础上,=两边同时乘以(根号下Sn-根号下S(n-1))
4.化简3的=的右边后,得根号下Sn-根号下S(n-1)= 1
5.依次类推:根号下S(n-1)-根号下S(n-2)= 1.
6.最后一个式子是根号下S(n-(n-2))-根号下S(n-(n-1))= 1
7.这些式子的左右两边分别加起来,得根号Sn-根号s1=n-1,
8.因为根号s1=b1=1,所以7的式子得根号Sn=n,
9.依次类推:根号S(n-1)=n-1
10.将8和9的式子代回原题目,得结果bn=2n-1