f(x)在[a,b]连续,a<X1<X2<X3<……<Xn<b,在[X1,Xn]上,必有§,使f(§)=(f(X1)+f
设f(x)在[a,b]上连续,x1,x2,x3.xn∈[a,b],且t1+t2+t3+.+tn=1,ti>0,i=
大一高数微积分证明:若F(X)在【A,B】上连续,A<X1<X2<X3<B,则在(X1,X3)内至少存在一点Y,使得F(
设f(x)在[a,b]上连续,且恒为正,证明对于任意的x1,x2∈(a,b),x1<x2,必存在一点ξ∈[x1,x2],
帮忙证明一道高数题~若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1 <x2
(2012•东莞二模)设f(x)是定义在[a,b]上的函数,用分点T:a=x0<x1<…<xi-1<xi<…xn=b将区
证明:若函数f(x)在[a,b]上连续,x1,..,xn属于[a,b]且t1+...+tn=1 ti>0(i=1,...
高数题:1 设f(x)在[a,b]内连续 x1,x2属于(a,b),x1
证明一道数学题证明对任意实数0<x1<x2<1,f‘(x)-[f(x1)-f(x2)]/(x1-x2)=0在(x1,x2
证明:设f(x)在[a ,b]上连续,且恒为正,试证明:对任意的X 1,X2 属于(a ,b).X1<X2,必存在一点t
设f(x)在(a,b)内连续,a<x1<x2<b,试证在(a,b)内至少有一点c,使得t1f(x1)+t2f(x2)=(
设f(x)在闭区间[a,b]上连续,x1,x2,...,xn是区间[a,b]上的点,求证在区间[a,b]上至少存在一点t
函数f(x)的定义域为(a,b),且对其内任意实数x1,x2均有:(x1-x2)[f(x1)-f(x2)]<0,则f(x