已知椭圆x^2/8+y^2/4=1,设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 19:52:59
已知椭圆x^2/8+y^2/4=1,设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在
以线段MN为直径的圆上
(1)证明点A在定圆上
(2)设直线AB的斜率为k,若k>=根号3,求e的取值范围
以线段MN为直径的圆上
(1)证明点A在定圆上
(2)设直线AB的斜率为k,若k>=根号3,求e的取值范围
设A(x,y)则B(-x,-y)
,因为椭圆x^2/8+y^2/4=1,所以F1(-2,0),M((x-2)/2,y/2),N((-2-x)/2,-y/2),
点o在线段MN为直径的圆上,所以OM垂直于ON,(y/2)/((x-2)/2)*(-y/2)/((-2-x)/2)=-1,得x^2+Y^2=4,证明点A在定圆上.
(2)设椭圆为x^2/a^2+y^2/b^2=1,F1(-c,0),M((x-c)/2,y/2),N((-c-x)/2,-y/2),
点o在线段MN为直径的圆上,所以OM垂直于ON,(y/2)/((x-c)/2)*(-y/2)/((-c-x)/2)=-1,得x^2+Y^2=c^2,k>=根号3,代入上面两式,求得1>e>1+根号3
,因为椭圆x^2/8+y^2/4=1,所以F1(-2,0),M((x-2)/2,y/2),N((-2-x)/2,-y/2),
点o在线段MN为直径的圆上,所以OM垂直于ON,(y/2)/((x-2)/2)*(-y/2)/((-2-x)/2)=-1,得x^2+Y^2=4,证明点A在定圆上.
(2)设椭圆为x^2/a^2+y^2/b^2=1,F1(-c,0),M((x-c)/2,y/2),N((-c-x)/2,-y/2),
点o在线段MN为直径的圆上,所以OM垂直于ON,(y/2)/((x-c)/2)*(-y/2)/((-c-x)/2)=-1,得x^2+Y^2=c^2,k>=根号3,代入上面两式,求得1>e>1+根号3
已知椭圆x^2/2+y^2=1的左焦点为F,O为坐标原点,设过点F的直线交椭圆与A.B两点,并且线段AB的中点在直线x+
已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A,B两点,M为AB中点,OM斜率为0.25,椭圆的短轴长为2
已知F1,F2分别是是椭圆x^2/16+y^2/7=1的左右焦点,A为椭圆一点,M为AF1中点,N为AF2中点,O为坐标
解析几何 直线与椭圆已知直线 y=kx+b 与椭圆 x^2+(y^2)/3=1交于A,B两点,M是AB的中点,O为原点.
已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A、B两点,M为AB中点,OM的斜率为0.25,椭圆的短轴长为
高二解析几何(椭圆)设A,B是椭圆(x^2)/4+(y^2)=1上的两点,O为坐标原点若直线AB在y轴上截距为4,且OA
已知x^2/25+y^2/16=1,o为坐标原点,点P在椭圆上运动,求OP的中点M的轨迹方程
已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜率为√
设AB是椭圆的x^2/a^2 + y^2/b^2=1的不垂直于对称轴且不过原点的弦,M为AB的中点,O为坐标原点,则
已知椭圆W:x2/4+y2=1,直线l过点(0,-2)与椭圆W交于两点A,B,O为坐标原点。 (1)设C为AB的中点,当
若椭圆 ax*2+by*2=1 与直线x+y=1 交于A,B两点,M为AB中点,直线OM (O为原点)的斜率为1/2,且
斜率为k1的直线与椭圆x^2/2+y^2=1交于A、B两点,点M为AB的中点,O为原点,记直线OM的斜率为k2,则k1k