请教教师此题怎么做?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 03:53:37
已知a,b,c分别是△ABC的三边长,你能判断出多项式(a²+b²-c²)²-4a²b²表示的数是什么符号?
解题思路: 本题既考查了对因式分解方法的掌握,又考查了三角形三边之间的关系,同时还隐含了整体的数学思想和正确运算的能力.
解题过程:
解: ∵(a2+b2-c2)2-4a2b2
=(a2+b2-c2+2ab)(a2+b2-c2-2ab)
=[(a2+2ab+b2)-c2][(a2-2ab+b2)-c2]
=[(a+b)2-c2][(a-b)2-c2]
=(a+b+c)(a+b-c)(a-b+c)(a-b-c),
∵a,b,c是△ABC的三边,
∴a+b+c>0,a+b-c>0,a-b-c<0,a-b+c>0,
∴(a2+b2-c2)2-4a2b2=(a+b+c)(a+b-c)(a-b+c)(a-b-c)<0.
最终答案:略
解题过程:
解: ∵(a2+b2-c2)2-4a2b2
=(a2+b2-c2+2ab)(a2+b2-c2-2ab)
=[(a2+2ab+b2)-c2][(a2-2ab+b2)-c2]
=[(a+b)2-c2][(a-b)2-c2]
=(a+b+c)(a+b-c)(a-b+c)(a-b-c),
∵a,b,c是△ABC的三边,
∴a+b+c>0,a+b-c>0,a-b-c<0,a-b+c>0,
∴(a2+b2-c2)2-4a2b2=(a+b+c)(a+b-c)(a-b+c)(a-b-c)<0.
最终答案:略