作业帮 > 数学 > 作业

在三角形ABC中,角BAC=90°,AB=AC,角ABC交AC于D,过C作垂线交BD的延长线于F,交BA的延长线F,求B

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 23:38:14
在三角形ABC中,角BAC=90°,AB=AC,角ABC交AC于D,过C作垂线交BD的延长线于F,交BA的延长线F,求BD=2CE
题目应该是
“已知:在三角形ABC中,角BAC=90°,AB=AC,角ABC平分线交AC于D,过C作垂线交BD的延长线于E,交BA的延长线F,
求证:BD=2CE” 吧
大致思路:
1)△ABD≌AFC(ASA)得BD=CF
2)△FBE≌△CBE(ASA)得CE=FE,即CF=2CE
3)得BD=2CE
证:∵Rt△BAC中,∠BAC=90°
∴∠BAD=∠CAF=90°
∵Rt△FAC中,∠CAF=90°
∴∠ACF+∠F=90°(直角三角形两锐角互余)
∵CE⊥BE
∴∠CEB=∠FEB=90°
∴Rt△FBE中,∠FEB=90°
∴∠FBE+∠F=90°(直角三角形两锐角互余)
∴∠FBE=∠ACF
在△ABD与AFC中
∠BAD=∠CAF
AB=AC
∠ABD=∠ACF
∴△ABD≌AFC(ASA)
∴BD=CE(全等三角形对应边相等)
∵BD平分∠ABC
∴∠FBE=∠CBE
在△FBE与△CBE中
∠FBE=∠CBE
BE=BE
∠FEB=∠CEB
∴△FBE≌△CBE(ASA)
∴CE=FE(全等三角形对应边相等)
即CF=2CE
∴BD=2CE