作业帮 > 综合 > 作业

如图,已知四棱柱ABCD-A1B1C1D1的棱长都为a,底面ABCD是菱形,且∠BAD=60°,侧棱A1A⊥平面ABCD

来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/08 01:37:16
如图,已知四棱柱ABCD-A1B1C1D1的棱长都为a,底面ABCD是菱形,且∠BAD=60°,侧棱A1A⊥平面ABCD,F为棱B1B的中点,M为线段AC1的中点.
(Ⅰ)求证:平面AFC1⊥平面A1C1AC;
(Ⅱ)求三棱锥C1-ABF的体积.
(1)证明:(如上图)连结BD,由直四棱柱ABCD-A1B1C1D1,可知:A1A⊥平面ABCD,
又∵BD⊂平面ABCD,
∴A1A⊥BD.
∵四边形ABCD为菱形,
∴AC⊥BD.
又∵AC∩A1A=A,AC、A1A⊂平面ACC1A1
∴BD⊥平面ACC1A1.…(7分)
而NA∥BD,
∴NA⊥平面ACC1A1
又∵NA⊂平面AFC1
∴平面AFC1⊥平面ACC1A1                                           …(9分)
(2)∵∠DAB=60°,∴C到AB的距离为:asin60°=

3
2a,就是C1到平面ABF的距离,AD=AA1=a,
∴三棱锥A1-AC1F的体积:
1

1
2AB•BF•

3
2a=
1

1
2×a×
1
2a×

3
2a=

3
24a3…(12分)