作业帮 > 数学 > 作业

已知椭圆C的左右焦点坐标分别是(-√2,0),(√2,0),离心率是√6/3,直线y=t与椭圆C交于不同的两点M

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 03:50:47
已知椭圆C的左右焦点坐标分别是(-√2,0),(√2,0),离心率是√6/3,直线y=t与椭圆C交于不同的两点M
N,线段MN为直径做圆P,圆心为p.设Q(x,y)是圆P上的动点,当 t 变化时,求y的最大值是多少
c=√2
e=√6/3
∴a=√3,b=1
x²/3+y²=1
y=t,x²/3+y²=1
消y得,x²+3t²=3
x1+x2=0,x1x2=3t²-3
所以圆心坐标为(0,t)
半径长为|x1|=|x2|=√(3-3t²)
所以圆的方程
x²+(y-t)²=3-3t²
令x=0,
y=t+-√(3-3t²)
由题意取y=t+√(3-3t²)
t∈(-1,1)(必须交于两点)
令t=sina,a∈(-π/2,π/2)
y=2sina+√3cosa=√13sin(a+φ)
显然ymax=√13
所以综上所述,ymax=√13
已知椭圆C的左右焦点分别为(-√2,0),(√2,0),离心率是3分之√6,直线y=t与椭圆C交于不同的两点M,N,以线 已知椭圆C的左、右焦点坐标分别是 ,,离心率是 ,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P 已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为√3/2.过点M(0,3)的直线l与椭圆C相交于AB两点. 已知椭圆x^2/a^2+y^2/b^2=1的离心率为根号2/2,左焦点F(-2,0)若直线y=x+m与椭圆交于不同的两点 (1/2)已知椭圆C的左、右焦点坐标分别是(负根号下2,0),(根号下2,0),离心率是三分之根六,直线y=t与椭... 已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为根号3/2,过点(0,3)的直线l与椭圆C交与两点A,B. 已知椭圆C:x^2/8+y^2=1,左焦点F(-2,0),若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点 标准椭圆C的左右焦点分别为F1,F2,过F2的直线斜率为1.与椭圆C交于A.B两点,且AF2=2FB.求椭圆C的离心率. 已知椭圆C:的焦距是2,离心率是0.5; (1)求椭圆的方程; (2)过椭圆左焦点F的直线L交椭圆于A、B两点 1.中心在坐标原点,焦点在x轴上的椭圆,它的离心率为√3/2,与直线x+y-1=0相交于两点M,N,且OM⊥ON.求椭圆 已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率e=1/2,F为右焦点,过焦点F的直线交椭圆C于P,Q两点,当P 高二椭圆方程已知椭圆方程C的焦点分别为F1(-2√2,0),F2(2√2,0),长轴长为6,直线y=kx+b,交椭圆C于