作业帮 > 数学 > 作业

设x,y均为正数,且x>y,求证:2x+1x2-2xy+y2≥2y+3.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:53:45
设x,y均为正数,且x>y,求证:2x+
1
x
证明:由题设x>y,可得x-y>0;
∵2x+
1
x2-2xy+y2-2y=2(x-y)+
1
(x-y)2=(x-y)+(x-y)+
1
(x-y)2;
又(x-y)+(x-y)+
1
(x-y)2≥3
3(x-y)2
1
(x-y)2
=3,当x-y=1时取“=“;
∴2x+
1
x2-2xy+y2-2y≥3,即2x+
1
x2-2xy+y2≥2y+3.