已知f(x)=ax-lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a=1,求证f(x)>g(x)+1/
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 01:50:28
已知f(x)=ax-lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a=1,求证f(x)>g(x)+1/2 具体来
证明:
f(x)=x-lnx;
求导,得1-1/x;
令其等于0;可得x=1;便可知道,在(0,1]函数f(x)单调减,在[1,e]函数f(x)单调增,也即在x=1处是f(x)的最小值,f(x=1)=1-ln1=1.
同理对g(x)求导,得(1-lnx)/(x*x);
令其等于0;可得x=e;函数g(x)在(0,e]区间单调增;也就是说在x=e处函数g(x)取得最大值.g(x=e)=lne/e=1/e;
而e>2;也即1/e+1/2g(x)+1/2;得证!
f(x)=x-lnx;
求导,得1-1/x;
令其等于0;可得x=1;便可知道,在(0,1]函数f(x)单调减,在[1,e]函数f(x)单调增,也即在x=1处是f(x)的最小值,f(x=1)=1-ln1=1.
同理对g(x)求导,得(1-lnx)/(x*x);
令其等于0;可得x=e;函数g(x)在(0,e]区间单调增;也就是说在x=e处函数g(x)取得最大值.g(x=e)=lne/e=1/e;
而e>2;也即1/e+1/2g(x)+1/2;得证!
已知f(x)=ax-lnx,x属于(0,e】,g(x)=lnx/x,其中e是自然数,a属于R.
已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
已知f(x)=ax-|nx,x∈(0,e],g(x)=lnx/x,其中e是自然常数a∈R(1)a
已知函数f(x)=e∧x+ax,g(x)=ax-lnx,其中a
已知函数f(x)=lnx+a/x,g(x)=x,F(x)=f(1+e的x次方)-g(x),x属于R
已知f(x)=ax-lnx,x∈(0,e],g(x)=lnx/x,其中e是自然常数,a∈R.
已知a为实数,函数f(x)=a/x+Lnx-1,g(x)=(Lnx-1)e^x+x.问:是否存在实数x0属于(0,e],
已知函数f(x)=ax-lnx. ,g(x)=lnx/x,定义域是(0,e],e是自然对数的底数,a属于R
已知函数f(x)=lnx-(a/x),g(x)=e^x(ax+1),a为常数
设函数f(x)=lnx -a/x,g(x)=(ax+1)e^x ,其中a 为实数
已知函数f(x)=ax-lnx、g(x)=lnx/x都定义在[1,e]上,其中e是自然常数.
已知a∈R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)