已知远C:x^2+y^2*24x-28y-36=0若有一点Q(4,2),过Q作AQ⊥BQ,交圆于A、B,求动弦AB的中点
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 15:00:18
已知远C:x^2+y^2*24x-28y-36=0若有一点Q(4,2),过Q作AQ⊥BQ,交圆于A、B,求动弦AB的中点的轨迹方程
P(4,2)是圆C:x^2+y^2-24x-28y-36=0内的一点,圆上的动点A,B满足∠APB=90°
Q(x,y)
2x=xA+xB,2y=yA+yB
4x^2=(xA+xB)^2
4y^2=(yA^2+yB)^2
x^2+y^2-24x-28y-36=0
(xA)^2+(yA)^2-24xA-28yA-36=0
(xB)^2+(yB)^2-24xB-28yB-36=0
[(xA)^2+(yA)^2-24xA-28yA-36]+[(xB)^2+(yB)^2-24xB-28yB-36]=0
(xA)^2+(xB)^2+(yA)^2+(yB)^2-24*(xA+xB)-28*(yA+yB)-72=0
(xA+xB)^2-2xA*xB+(yA+yB)^2-2yA*yB-24*2x-28*2y-72=0
4x^2+4y^2-48x-56y-72=2(xA*xB+yA*yB)
PA⊥PB
[(yA-2)/(xA-4)]*[(yB-2)/(xB-4)]=-1
(xA-4)*(xB-4)+(yA-2)*(yB-2)=0
xA*xB+yA*yB=4(xA+xB)+2(yA+yB)-20
xA*xB+yA*yB=4*2x+2*2y-20
16x+8y-40=2(xA*xB+yA*yB)
4x^2+4y^2-48x-56y-72=16x+8y-40
x^2+y^2-16x-16y-8=0
AB中点Q的轨迹方程是园:(x-8)^2+(y-8)^2=136
Q(x,y)
2x=xA+xB,2y=yA+yB
4x^2=(xA+xB)^2
4y^2=(yA^2+yB)^2
x^2+y^2-24x-28y-36=0
(xA)^2+(yA)^2-24xA-28yA-36=0
(xB)^2+(yB)^2-24xB-28yB-36=0
[(xA)^2+(yA)^2-24xA-28yA-36]+[(xB)^2+(yB)^2-24xB-28yB-36]=0
(xA)^2+(xB)^2+(yA)^2+(yB)^2-24*(xA+xB)-28*(yA+yB)-72=0
(xA+xB)^2-2xA*xB+(yA+yB)^2-2yA*yB-24*2x-28*2y-72=0
4x^2+4y^2-48x-56y-72=2(xA*xB+yA*yB)
PA⊥PB
[(yA-2)/(xA-4)]*[(yB-2)/(xB-4)]=-1
(xA-4)*(xB-4)+(yA-2)*(yB-2)=0
xA*xB+yA*yB=4(xA+xB)+2(yA+yB)-20
xA*xB+yA*yB=4*2x+2*2y-20
16x+8y-40=2(xA*xB+yA*yB)
4x^2+4y^2-48x-56y-72=16x+8y-40
x^2+y^2-16x-16y-8=0
AB中点Q的轨迹方程是园:(x-8)^2+(y-8)^2=136
已知a(1/4,0),b(4,0),点b是y轴上的动点,过点b做ab的垂线l交X轴于点q,若向量Ap+向量Aq=2向量a
1.已知抛物线y^2=4x,过定点Q(2,0)作一条直线,交抛物线于A,B两点,求AB中点的轨迹方程.
已知Y方=2X,过点Q(1.2)作一条直线交抛物线于A,B两点,求弦AB中点轨迹方程
已知抛物线y2=2x,过点Q(2,1)作一条直线交抛物线于A.B两点,试求弦AB中点的轨迹方程
已知圆C:(x-1)+y=9内有一点P(2,2),过点P作直线L交圆C于A,B两点
抛物线的一道题过抛物线y^2=8x 的焦点作直线交抛物线于P.Q两点,则线段P,Q的中点的轨迹方程为A.y=4X-1 B
已知圆x的平方+y的平方+2x+ay+1=0过定点p(0,1)作斜率为1的直线交圆C于A,B两点,p为线段AB的中点,求
1.已知抛物线C:y=2x^2,直线y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线交C于点N
已知抛物线C:y=2x^2,直线y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线交C于点N.
已知圆C:(X+3)的平方+(Y-4)的平方=4,过点P(1,2)作圆的割线交圆C于A.B两点,求AB中点M的轨迹方程
过点Q(2,-4)做圆O:x2+y2=9的割线,交圆O于A,B求AB中点P的轨迹方程.AB中点P(x,y) 2x=xA+
已知直线y=-2/3x+2分别与x轴、y轴相交于A、B两点,过点C(0,-3)作直线AB的垂线交直线AB于点E,交x轴于