作业帮 > 数学 > 作业

lim(x→0)[1/(sinx)^2-(cosx)^2/x^2]

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 23:47:58
lim(x→0)[1/(sinx)^2-(cosx)^2/x^2]
lim(x→0)[1/(sinx)^2-(cosx)^2/x^2]
=lim(x→0)[x^2-sin^2 x(cosx)^2]/[x^2(sinx)^2]
=lim(x→0)[x^2-sin^2 x(cosx)^2]/[x^4]
=lim(x→0)[x^2-1/4sin^2 (2x)]/[x^4] (0/0)
=lim(x→0)[2x-sin (2x)cos(2x)]/[4x^3]
=lim(x→0)[2x-1/2sin (4x)]/[4x^3] (0/0)
=lim(x→0)[2-2cos (4x)]/[12x^2]
=lim(x→0)(4x)^2/[12x^2]
=4/3