作业帮 > 数学 > 作业

四边形ABCD是矩形,AB=4cm,AD=3cm.把矩形沿AC折叠,点B落在点E,连接DE.四边形ACED的面积和周长是

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 22:52:56
四边形ABCD是矩形,AB=4cm,AD=3cm.把矩形沿AC折叠,点B落在点E,连接DE.四边形ACED的面积和周长是多少?
RT△ABC≌RT△AEC(RT△AEC由RT△ABC折叠而成),
AE=AB=4cm,CE=BC=AD=3cm,
设CD与AE交于F,
∠CFE=∠AFD,∠CEF=∠ADF=90度,
所以∠FCE=∠FAD,CE=AD
RT△ABC≌RT△AEC,[ASA]
FE=FD,
AF²=AD²+FD²,
(AE-FE)²=AD²+FD²,
(AE-FD)²=AD²+FD²,
(4-FD)²=3²+FD²,
16-8FD=9,
FD=7/8(cm)=FE,
FC=CD-FD=4-7/8=25/8(cm),
作EH⊥CD,垂足H,EH*FC/2=FD*AD/2,[RT△ABC≌RT△AEC,面积相等]
EH*25/8=7/8*3,
EH=21/25(cm),
CH²=CE²-HE²=3²-(21/25)²=(3²*25²-21²)/25²=(75+21)(75-21)/25²=96*54/25²,
CH=72/25(cm),
DH=CD-CH=4-72/25=28/25,
DE²=DH²+EH²=28²/25²+21²/25²=1225/25²=49/25,
DE=7/5(cm),
S四边形ACED=SRT△ADC+S△DCE
=AD*CD/2+EH*CD/2
=3*4/2+21/25*4/2
=6+42/25
=192/25
=7.68(cm²)
AC²=AB²+BC²=4²+3²=25,
AC=5(cm),
四边形ACED的周长=AC+CE+DE+AD
=5+3+7/5+3
=62/5
=12.4(cm)