(2010•韶关模拟)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/09 03:54:09
(2010•韶关模拟)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(Ⅰ)求a、b的值;
(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.
(Ⅰ)求a、b的值;
(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.
(Ⅰ)f'(x)=6x2+6ax+3b,
因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.
即
6+6a+3b=0
24+12a+3b=0
解得a=-3,b=4.
(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).
当x∈(0,1)时,f'(x)>0;
当x∈(1,2)时,f'(x)<0;
当x∈(2,3)时,f'(x)>0.
所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.
则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.
因为对于任意的x∈[0,3],有f(x)<c2恒成立,
所以9+8c<c2,
解得c<-1或c>9,
因此c的取值范围为(-∞,-1)∪(9,+∞).
因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.
即
6+6a+3b=0
24+12a+3b=0
解得a=-3,b=4.
(Ⅱ)由(Ⅰ)可知,f(x)=2x3-9x2+12x+8c,f'(x)=6x2-18x+12=6(x-1)(x-2).
当x∈(0,1)时,f'(x)>0;
当x∈(1,2)时,f'(x)<0;
当x∈(2,3)时,f'(x)>0.
所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.
则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.
因为对于任意的x∈[0,3],有f(x)<c2恒成立,
所以9+8c<c2,
解得c<-1或c>9,
因此c的取值范围为(-∞,-1)∪(9,+∞).
设函数f(x)=x3+ax2+bx+c在x=1处取得极值-2,试用c表示a和b,并求f(x)的单调区间.
9.已知函数f(x)=x3+ax2+bx+c在x=-1与x=2处都取得极值. (Ⅰ)求a,b的值及函
设函数f(x)=2x^3+3ax^2+3bx+8c在x=1及x=2时取得极值.
已知函数f(x)=x3+ax2+bx+c(x∈[-1,2]),且函数f(x)在x=1和x=-23处都取得极值.
函数f(x)=x3+ax2+bx+c在x=−23与x=1时都取得极值
fx=x3+ax2+bx+c在x=-1,x=2处取得极值若对x属于[-2,3],不等式f(x)+3/2c
已知函数f(x)=x3+ax2+bx+c在x=-2处取得极值,并且它的图象与直线y=-3x+3在点(1,0)处相切,求a
已知函数f(x)=x3次方+ax2平方+bx+c在x=-2/3与x=1时都取得极值.1.求a ,b 的值; 2、求函数f
设函数f(x)=2x^3+3ax^2+3bx+8c在x=1及x=2取得极值(1)f(x)增区间(2)若对x属[0,3】都
已知函数f(x)=x3次方+ax平方+bx+c在x=-3分子2与x=1时都取得极值.求a,b的值与函数f(x)的单调区间
设函数f(x)=2x的3次方+3ax的平方+3bx+8c在x=1及x=2时取得极值.
设函数f(x)=x3+ax2+bx+c和g(x)=4x2-7x+2,满足下列条件:①函数y=f(x)在x=-1处有极值;