用詹森不等式证明n/(1/a1+1/a2+……+1/an
不等式证明(a1+a2+.+an)/n>=(a1*a2*.*an)^(1/n) 该如何证?它是哪个不等式的推广?
设a1,a2,a3.an都是正数,证明不等式(a1+a2+.+an)(1/a1+1/a2+.+1/an)≥n²
已知数列{an}满足a1=1/2,a1+a2+……+an=n^2an,用数学归纳法证明an=1/{n(n+1)}
不等式证明 设n个正实数a1,a2,a3,...,an满足不等式(a1^2+a2^2+...+an^2)^2>(n-1)
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
已知数列{An}满足A1=0.5,A1+A2+…+An=n^2An(n∈N*),试用数学归纳法证明:An=1/n(n+1
设a1,a2,...,an都是正数,证明不等式(a1+a2+...+an)[1/(a1)+1/(a2)+...+1/(a
数列an=3^n - 2^n 证明:对一切正整数n 有1/a1 + 1/a2 +…+ 1/an
设a1,a2,a3,…,an(n∈N*)都是正数,且a1a2a3•…an=1,试用数学归纳法证明:a1+a2+a3+…+
用数学归纳法证明:如果数列{an}是以q(q≠1)为公比的等比数列,那么a1+a2+…+an=a1(1-q^n)/(1-
高二柯西不等式设a1,a2,...an是一串互不相等的正整数证明对一切自然数n都有(a1/1^2)+(a2/2^2)+.
一直数列{An}满足A1=1/2,A1+A2+…+An=n^2An