几何体E-ABCD是四棱锥,三角形ABD为正三角形,CB=CD,EC垂直BD求证BE=DE?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 21:35:15
几何体E-ABCD是四棱锥,三角形ABD为正三角形,CB=CD,EC垂直BD求证BE=DE?
这题其实还有第二小问的噢
证明:(I)
设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,
又已知CE⊥BD,EC∩CO=C,
所以BD⊥平面OCE.
所以BD⊥OE,即OE是BD的垂直平分线,
所以BE=DE.
补充: (2)问 :若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
(II)证法一:
取AB中点N,连接MN,DN,
∵M是AE的中点,
∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC,
∴MN∥平面BEC,
∵△ABD是等边三角形,
∴∠BDN=30°,又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN⊄平面BEC,BC⊂平面BEC,
∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,
∴DM∥平面BEC
证法二:延长AD,BC交于点F,连接EF,
∵CB=CD,∠BCD=120°,
∴∠CBD=30°,
∵△ABD是等边三角形,
∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,
∴AB=1 2 AF,
又AB=AD,
∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC,
∴DM∥平面BEC
证明:(I)
设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,
又已知CE⊥BD,EC∩CO=C,
所以BD⊥平面OCE.
所以BD⊥OE,即OE是BD的垂直平分线,
所以BE=DE.
补充: (2)问 :若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
(II)证法一:
取AB中点N,连接MN,DN,
∵M是AE的中点,
∴MN∥BE,又MN⊄平面BEC,BE⊂平面BEC,
∴MN∥平面BEC,
∵△ABD是等边三角形,
∴∠BDN=30°,又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN⊄平面BEC,BC⊂平面BEC,
∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,
∴DM∥平面BEC
证法二:延长AD,BC交于点F,连接EF,
∵CB=CD,∠BCD=120°,
∴∠CBD=30°,
∵△ABD是等边三角形,
∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,
∴AB=1 2 AF,
又AB=AD,
∴D为线段AF的中点,连接DM,DM∥EF,又DM⊄平面BEC,EF⊂平面BEC,
∴DM∥平面BEC
在四棱锥P-ABCD中,三角形PBC为正三角形,AB垂直平面PBC.AB平行CD,AB=1\2DC,E为PD的中点.
三角形ABC是正三角形,延长CB到E,使BE=BD=AD,DE=10cm,求DC
在四面体ABCD中,CB=CD,AD垂直BD,且E,F分别是AB,BD的中点,求证:
AD垂直BC垂足为D BD=CD 求证 三角形 ABD等于 三角形ACD
如图,在四棱锥P-ABCD中,AD//BC,AD=2BC,AB=PB,PC垂直BD,AC垂直BD,E为PA中点。 求证:
四棱锥p-ABCD中 底面ABCD为矩形,PD垂直底面,AD=PD,E F分别为CD PB 中点 求证 EF垂直平面PA
在四面体ABCD中,CB=CD,AD垂直BD,点E,F分别是AB,BD中点,.直线EF//面ACD,求证,平面EFC垂直
已知,如图正方形ABCD中,E是对角线BD上的一点,过E作EF垂直BC,EC垂直CD,垂足为E G求证AE=FG
如图,Rt三角形中,CD是斜边上的高,DE垂直AC于E,AC比CB=4比5,则AE比EC等于
在平行四边形ABCD中,E 为CD 上一点,DE:EC=2:3,连接AE BE BD ,且AE ,BD交于点F,则 S三
ABCD是空间四边形,AB=AD,CB=CD,求证:AC垂直BD
在四面体中ABCD,CB=CD,AD垂直BD,且E,F分别是AB,BD的重点,求证:EF平行面ACD;面EFC垂直面BC