如图,点D在圆O的直径AB的延长线上,点C在圆O上,且AC=CD,角ACD=120,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 21:06:32
如图,点D在圆O的直径AB的延长线上,点C在圆O上,且AC=CD,角ACD=120,
若圆O的半径为2,求图中阴影部分的面积
若圆O的半径为2,求图中阴影部分的面积
1).求证CD是○O的切线
(2).若圆O的半径为2,求图中阴影部分的面积
1、连接BC
∵AB是直径
∴∠ACB=90°
∴∠BCD=∠ACD-∠ACB=120°-90°=30°
∵AC=CD
∴∠A=∠D=(180°-∠ACD)/2=(180°-120°)/2=30°
∴∠ABC=60°
连接OC=OB
∴△BOC是等边三角形
∴OC=OB=BC
∴∠OCD=∠OCB+∠BCD=60°+30°=90°
∴CD是圆的切线
2、∵∠BCD=∠D=30°
∴BC=BD=OB=2
即OD=4
∴CD²=OD²-OC²=4²-2²=12
CD=2√3
∴S△COD=1/2OC×CD=1/2×2×2√3=2√3≈3.464
S扇形COB=2²×3.14×60/360=4×3.14×1/6≈2.093
∴S阴影=S△COD-S扇形COB=3.464-2.093=1.371
(2).若圆O的半径为2,求图中阴影部分的面积
1、连接BC
∵AB是直径
∴∠ACB=90°
∴∠BCD=∠ACD-∠ACB=120°-90°=30°
∵AC=CD
∴∠A=∠D=(180°-∠ACD)/2=(180°-120°)/2=30°
∴∠ABC=60°
连接OC=OB
∴△BOC是等边三角形
∴OC=OB=BC
∴∠OCD=∠OCB+∠BCD=60°+30°=90°
∴CD是圆的切线
2、∵∠BCD=∠D=30°
∴BC=BD=OB=2
即OD=4
∴CD²=OD²-OC²=4²-2²=12
CD=2√3
∴S△COD=1/2OC×CD=1/2×2×2√3=2√3≈3.464
S扇形COB=2²×3.14×60/360=4×3.14×1/6≈2.093
∴S阴影=S△COD-S扇形COB=3.464-2.093=1.371
如图,已知AB是圆O的直径,点D在AB的延长线上,且AC=CD,点C在圆O上,角CAB= 30度,求证:DC是圆O的切线
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O的半径为2
如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A
如图,AB为圆O的直径,点C在AB的延长线上,点D在圆O上,且AD=CD,如果tanC=根号3/3,BC=1,求AD的长
关于圆的切线证明题如图,AB是⊙O的直径,C点在圆上,CD⊥AB于D,P在BA延长线上,且∠PCA=∠ACD.求证:PC
证明圆的切线AB是圆O的直径,点D在AB的延长线上,且BD=OB,点C在圆O上,角CAB=30度;证明CD是圆O的切线.
如图,AB是圆O的直径,点C在BA的延长线上,CA=AO,点D在圆O上,∠ABD=30°. 1)求证:CD是圆O的切线.
有关圆周角如图,A、B、C、三点在圆O上,CD是圆O的直径,CD⊥AB于D(1)求证:∠ACD=∠BCE;(2)延长CD
如图,AB是圆O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30°
如图,C在圆O弦AB延长线上,CB=AB,CD切圆O于点D,CD=6根号2,直径MF⊥AB于点E,且E为OF中点,求圆O
如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O
如图,已知AB是圆心O的直径,点D在AB的延长线上,DC是圆心O的切线,切点为C,已知角ACD=120度,BD-5cm,