设数列an满足a1+3a2+3²a3+…+3^n-1(an)=n/3,求数列an的通项公式
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 02:54:18
设数列an满足a1+3a2+3²a3+…+3^n-1(an)=n/3,求数列an的通项公式
n=1时,a1=1/3n>1时,a1+3a2+...+3^(n-2)a(n-1)+3^(n-1)an=n/3① a1+3a2+...+3^(n-2)a(n-1)=(n-1)/3②①-②得3^(n-1)an=n/3-(n-1)/3=1/3, ∴an=1/3×(1/3)^(n-1)=(1/3)^n,n=1时也符合∴an通项为an=(1/3)^n=1/3^n∴bn=n/an=n×3^nSn=1×3^1+2×3^2+3×3^3+...+(n-1)×3^(n-1)+n×3^n③3Sn=1×3^2+2×3^3+3×3^4+...+(n-1)×3^n+n×3^(n+1)④④-③得2Sn=-1×3^1+(1-2)×3^2+(2-3)×3^3+...+[(n-1)-n]×3^m+n×3^(n+1) =-3^1-3^2+3^3-...-3^n+n×3^(n+1)=-[3+3^2+3^3+...+3^n]+n×3^(n+1) =-3×(3^n-1)/(3-1)+n×3^(n-1)=-[3^(n+1)-3]/2+n×3^(n+1) =[-3^(n+1)+3+2n×3^(n+1)]/2=[(2n-1)×3^(n+1)+3]/2∴Sn=[(2n-1)×3^(n+1)+3]/4
设数列an满足a1+3a2+3²a3+…+3^n-1(an)=n/3,求数列an的通项公式
设数列{an}满足a1+3a2+3平方a3+...+3n-1an=n/3,n属于N*.求数列{an}的通项公式?
设数列an满足a1+3a2+3^2a3+.+3^n-1an=n/3,n∈N*,求数列an的通项公式
设数列{An}满足A1+3A2+3²A3+…+3n-1An=3/n.(1)求数列{An}的通项.
设数列an满足a1+3a2+3²a3+.+3的n-1次方 an=n/3 求an的通项公式
设数列{an}满足a1+a2/2+a3/3+.+an/n=n^2-2n-2,求数列{an}的通项公式
设数列{an}满足a1+3 a2+3^2 a3+……+3^n-1 an=n/3,a属于N* 求数列{an}的通项
若数列{an}满足a1×a2×a3…an=n²+3n+2,求数列{an}的通项公式
数列(an)a1+a2+a3+...+an=3^n+2求an的通项公式
设数列{an}满足a1+3a2+3的平方a3+.+3的n-1次方an=n/3. (1)求数列{an}的通项.
若数列an满足,a1+a2+a3+.+an=3n-2求 an的通项公式
设数列{an}满足a1=6,a2=4,a3=3,且数列{an+1-an}(n∈N*)是等差数列,求数列{an}的通项公式