已知a>0且a≠1,数列{an}是首项和公比都为a的等比数列,令bn=anlgan(n∈N·),问是否存在实数a,
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 06:03:49
已知a>0且a≠1,数列{an}是首项和公比都为a的等比数列,令bn=anlgan(n∈N·),问是否存在实数a,
对任意n∈N·,数列{bn}中的每一项总小于它后面的项?证明你的结论.
我要的是证明过程,不需要求出a的范围
对任意n∈N·,数列{bn}中的每一项总小于它后面的项?证明你的结论.
我要的是证明过程,不需要求出a的范围
易求得an=a^n,则bn+1-bn=an+1lgan+1-anlgan=(n+1)*a^(n+1)*lga-n*a^n*lga=a^n*lga[(n+1)a-n]
要满足数列{bn}中的每一项总小于它后面的项,即bn+1-bn>0 a^n*lga[(n+1)a-n]>0
因为a^n>0 则 lga[(n+1)a-n]>0 当a>1时 lga>0 (n+1)a-n>0 满足条件.
综上,存在a使得数列{bn}中的每一项总小于它后面的项
再问: bn+1-bn=an+1lgan+1-anlgan=(n+1)*a^(n+1)*lga-n*a^n*lga=a^n*lga[(n+1)a-n] 这一步有点晕
再答: 这个没有涉及什么运算的,纯提公因式,合并同类,楼主可自己抄一遍,这样就可以更好的理解。
要满足数列{bn}中的每一项总小于它后面的项,即bn+1-bn>0 a^n*lga[(n+1)a-n]>0
因为a^n>0 则 lga[(n+1)a-n]>0 当a>1时 lga>0 (n+1)a-n>0 满足条件.
综上,存在a使得数列{bn}中的每一项总小于它后面的项
再问: bn+1-bn=an+1lgan+1-anlgan=(n+1)*a^(n+1)*lga-n*a^n*lga=a^n*lga[(n+1)a-n] 这一步有点晕
再答: 这个没有涉及什么运算的,纯提公因式,合并同类,楼主可自己抄一遍,这样就可以更好的理解。
已知a>0,a≠1,数列{An}是首项为a 公比为a的等比数列,令Bn=AnlgAn,1)求数列{Bn}
已知a>0,a≠1,数列{An}是首项为a、公比也为a的等比数列,令Bn=AnlgAn 求数列{Bn}的前n项之和Sn
已知a>0,a≠1,数列{an}是首项为a,公比也为a的等比数列,令bn=an×lg an(n∈N+),求数列{bn}的
已知等比数列{an}的首项a1>0,公比q>0.设数列{bn}的通项bn=a(n+1)+a(n+2),数列{an},{b
已知数列{an}是公差为1的等差数列,{bn}是公比为2的等比数列,Sn,Tn分别是数列{an}和{bn}前n项和,且a
已知等比数列{an}中,a1=1,公比为q(q不为1,且q不为0),且bn=a(n+1)-an.(1)判断数列{bn}是
已知数列{an}为等差数列,且a1=2,a1+a2+a3=12 令bn=3^a n,求数列{bn}的前n项和
已知数列{an}满足条件:a1=1,a2=r,且数列{anan+1}是公比为q的等比数列.设bn =a(2n-1)+a(
已知{an}是公差为d的等差数列,{bn}是公比是q的等比数列,找出所有数列{an},{bn},使得对一切n属于N*,a
设数列{an}的前n项和为sn.已知a1=a,an+1=sn-3n,n∈N*,设bn=sn-3n,且bn≠0
已知数列an,a1=-60,a(n+1)=an+4,n∈正自然数,令bn=an的绝对值,数列an的前n项和为sn,bn的
已知数列{an}是等比数列,首项a1=8,公比q>0,令bn=log2an,设sn为{bn}的前n项和,若