以过椭圆x2a2+y2b2=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是( )
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 15:27:16
以过椭圆
x
设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D
连接AC、BD,设AB的中点为M,作MN⊥l于N 根据圆锥曲线的统一定义,可得 |AF| |AC|= |BF| |BD|=e,可得 |AF|+|BF| |AC|+|BD|=e<1 ∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|, ∵以AB为直径的圆半径为r= 1 2|AB|,|MN|= 1 2(|AC|+|BD|) ∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离 故选:C
以过椭圆x2a2+y2b2=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是( )
已知椭圆的方程为x2a2+y2b2=1(a>b>0),过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线
设A,F分别是椭圆x2a2+y2b2=1(a>b>0)的左顶点与右焦点,若在其右准线上存在点P,使得线段PA的垂直平分线
已知双曲线x2a2-y2b2=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为a22(O为
设双曲线x2a2−y2b2=1(0<a,0<b)的右准线与两渐近交于A,B两点,点F为右焦点,若以AB为直径的圆经过点F
如图,已知椭圆C的方程为:x2a2+y2b2=1(a>b>0),B是它的下顶点,F是其右焦点,BF的延长线与椭圆及其右准
已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线交椭圆C于A、B两
已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线与椭圆有一个交点P
设抛物线y2=2px(p>0)的焦点F恰好是椭圆x2a2+y2b2=1(a>b>0)的右焦点,且两条曲线的交点的连线过点
(2014•嘉定区二模)已知椭圆Γ:x2a2+y2b2=1(a>b>0)的右焦点为(22,0),且椭圆Γ过点(3,1).
已知双曲线C:x2a2−y2b2=1(a>0,b>0)的右准线与一条渐近线交于点M,F是右焦点,若|MF|=1,且双曲线
(2014•葫芦岛二模)已知椭圆C:x2a2+y2b2=1(a>b>0),A1,A2是椭圆的两个长轴端点,过右焦点F的直
|