过抛物线x^2=2py(P>0)的焦点F做直线交抛物线于A、B两点,o为坐标原点
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 00:49:44
过抛物线x^2=2py(P>0)的焦点F做直线交抛物线于A、B两点,o为坐标原点
1.证明:△ABO是钝角三角形
2.求三角形ABO面积最小值
1.证明:△ABO是钝角三角形
2.求三角形ABO面积最小值
1:过焦点的直线斜率射为K,因为焦点是p/2,所以有一个K就能确定这直线,然后和抛物线方程联立,求出2个交点的带K坐标,再求出△ABO的各条边长,然后根据勾股定理2边平方和小于第三边的平方,并且这3条边能组成三角形,所以是钝角
2:因为2个交点坐标都有,从2个交点向x轴引垂线,△AOC和△BOC的高都有了,再求出2个三角形的面积和,根据基本不等式就可求出最小值
我这是最直接的办法,想起来比较简单但是算起来麻烦,可能其他人还有讨巧的办法吧
2:因为2个交点坐标都有,从2个交点向x轴引垂线,△AOC和△BOC的高都有了,再求出2个三角形的面积和,根据基本不等式就可求出最小值
我这是最直接的办法,想起来比较简单但是算起来麻烦,可能其他人还有讨巧的办法吧
已知抛物线y^2=2px(p>0),过焦点F的动直线l交抛物线于A、B两点,O为坐标原点,求证:
抛物线x2=2py(p大于0) 过焦点F的直线l交抛物线于A,B两点,O为原点,若三角形 AOB面积最小值为8.
过抛物线y^2=4x的焦点F的直线L与这条抛物线交于A.B两点,O为坐标原点
)已知抛物线y^2=4x,过点P(-2,0)的一条直线l交抛物线于A,B两点,O为坐标原点,F为焦点
设抛物线C:y^2=2px(p>0),直线l经过抛物线的焦点F与抛物线交于A,B两点,O是坐标原点.
已知抛物线x^2=2py(P>0)的焦点为F,过点F的直线l交抛物线于A,B两点,A、B两点的横坐标之积为定值-4
直线过抛物线C:x^2=2py(p>0)的焦点F与抛物线C交于A,B两点,过线段AB的中点M作x轴的垂线交抛物线于N点,
过抛物线y平方=4x的焦点F,引倾斜角为兀\3的直线,交抛物线于A,B两点,O是坐标原点,
过抛物线y^2=4x的焦点 倾斜角为135度的直线交抛物线于P.Q两点,O是坐标原点
已知过点p(0,2)的直线l与抛物线y∧2=4x交于a,b两点,o为坐标原点.
设O为坐标原点,抛物线y2=2x与过焦点的直线交于A、B两点,则kOA•kOB=______.
设坐标原点为O,抛物线y2=2x与过焦点的直线交于A、B两点,则OA•OB=( )