已知b、c是实数,函数f(x)=x 2 +bx+c对任意α、β∈R有f(sinα)≥0且f(2+cosβ)≤0.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:42:26
(1)对任意α,β∈R,有-1≤sinα≤1,1≤2+cosβ≤3.
因为f(sinα)≥0且f(2+cosβ)≤0, 所以f(1)≥0且f(1)≤0, 所以,f(1)=0. …(2分) (2)证明:因为f(1)=0,所以1+b+c=0,即b=-1-c. 因为1≤2+cosβ≤3,f(2+cosβ)≤0, 所以f(3)≤0. 即3 2 +3b+c≤0,有9+3(-l-c)+c≤0, 所以,c≥3. …(4分)
已知b、c是实数,函数f(x)=x2+bx+c对任意α、β∈R有f(sinα)≥0且f(2+cosβ)≤0.
已知b.c为实数,函数f(x)=x^2+bx+c对任意α,β∈R有:f(sinα)≥0且f(2+cosβ)≤0
已知a、b是实数,函数f(x)=x^2+bx+c对任意α、β∈R有: f(sinα)≥0 f(2+cosβ)≤0
一道高中数学题已知b,c为实数,函数f(x)=x^2+bx+c对任意的角α,β∈R,都有f(sinα)≥ 0,f(2+c
已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.
已知b,c∈R,f(x)=x2+bx+c,对任意α,β∈R,都有f(sinα)≥0,f(2+cosβ)≤0
已知函数f(x)=x2+bx+c对任意α,β∈R都有f(sinα)≥0,且f(2+sinβ)≤0.
设二次函数f(x)=x2+bx+c(b,c∈R),已知不论α,β为何实数恒有f(sinα)≥0,f(2+cosβ)≤0
已知函数f(x)=x^2+bx+c,对任意αβ∈R都有f(sinα)≥0且f(2+cosβ)≤0
1、已知函数f(x)=x^2+bx+c对任意α 、β∈R都有f(sinα)≥0且f(2+cosβ)≤0.
高一数学超难题已知函数f(x)=x^2+bx+c,对任意α,β属于R都有f(sinα)〉=0且f(2+cosβ)
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:f(-2)=0,对任意实数x,都有f(x)≥x,且当x∈
|