这个数列怎么求和等比数列an=2^n,求S1+2S2+...+nSn
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 05:44:20
这个数列怎么求和
等比数列an=2^n,求S1+2S2+...+nSn
等比数列an=2^n,求S1+2S2+...+nSn
∵an=2^n
∴a1=2 q=2
于是Sn=2(1-2ⁿ)/(1-2)=2(2ⁿ-1)=2^(n+1)-2
S1+2S2+...+nSn
=2²-2+2*(2³-2)+3*(2⁴-2)+……+n[2^(n+1)-2]
=2²+2*2³+3*2⁴+……+n*2^(n+1)-(2+2*2+3*2+n*2)
=[2²+2*2³+3*2⁴+……+n*2^(n+1) ]-2(1+2+3+…………+n)
设Tn=2²+2*2³+3*2⁴+……+n*2^(n+1)
则2Tn= 2³+2*2⁴+3*2^5+……+n*2^(n+2)
相减得
Tn=-2²-2³-2⁴-……-2^(n+1)+n*2^(n+2)
=-[2²+2³+2⁴+……+2^(n+1)]+n*2^(n+2)
=-2²(1-2ⁿ)/(1-2)+n*2^(n+2)
=4-2^(n+2)+n*2^(n+2)
=(n-1)*2^(n+2) +4
Qn=2(1+2+3+…………+n)=2*(n+1)n/2=n²+n
∴S1+2S2+...+nSn
=Tn-Qn
=(n-1)*2^(n+2) +4-(n²+n)
=(n-1)*2^(n+2) -n^2-n+4
∴a1=2 q=2
于是Sn=2(1-2ⁿ)/(1-2)=2(2ⁿ-1)=2^(n+1)-2
S1+2S2+...+nSn
=2²-2+2*(2³-2)+3*(2⁴-2)+……+n[2^(n+1)-2]
=2²+2*2³+3*2⁴+……+n*2^(n+1)-(2+2*2+3*2+n*2)
=[2²+2*2³+3*2⁴+……+n*2^(n+1) ]-2(1+2+3+…………+n)
设Tn=2²+2*2³+3*2⁴+……+n*2^(n+1)
则2Tn= 2³+2*2⁴+3*2^5+……+n*2^(n+2)
相减得
Tn=-2²-2³-2⁴-……-2^(n+1)+n*2^(n+2)
=-[2²+2³+2⁴+……+2^(n+1)]+n*2^(n+2)
=-2²(1-2ⁿ)/(1-2)+n*2^(n+2)
=4-2^(n+2)+n*2^(n+2)
=(n-1)*2^(n+2) +4
Qn=2(1+2+3+…………+n)=2*(n+1)n/2=n²+n
∴S1+2S2+...+nSn
=Tn-Qn
=(n-1)*2^(n+2) +4-(n²+n)
=(n-1)*2^(n+2) -n^2-n+4
已知数列an的前项和为Sn,a1=1,nSn+1-(n+1)Sn=n^2+cn,S1,S2/2,S3/3成等差数列.(1
已知等比数列{an}的前n项和为sn,a1=2,s1,2s2,3s3成等差数列,1.求数列{an}的通项公式
设等比数列{an}的前n项和为Sn,且满足S1=2,S2=8.(1)求数列{an}的通向公式an(2)求数列{nan}的
an的前n项和Sn,a1=1,an+1=(n+2)/nSn,证数列Sn/n是等比数列和Sn+1=4an
已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列. (Ⅰ)求数列{an
已知等差数列{an的公差为2,前n项和为Sn,且S1,S2,S3成等比数列.(1)求数列{an的通项公式
已知等比数列{an}的前n项和为Sn,a1 =1.S1、2S2、3S3成等差数列,求数列{an}的通项公式
高一数列求和题1.等比数列的首项为a,公比为q,Sn为前n项的和,求S1+S2+…+Sn2.数列{an}的通项公式是an
已知数列an是首项为4公比为q的等比数列,sn是其前n项和,且4a1,a5,-2a3成等差数列,求设An=S1+S2+…
An=(2n-1)(2n+1),这个数列怎么求和?
an=1/2n 这个数列可以求和吗?
若Sn是公差不为0的等差数列an的前n项和,且S1,S2,S4成等比数列,求数列S1,S2,S4的公比