等额本息还款法的计算公式,并且此公式的推导过程是什么?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 07:27:33
等额本息还款法的计算公式,并且此公式的推导过程是什么?
我想知道等额本息还款法的数学模型是什么,为什么要这么推导?理论依据和公证性如何?
我想知道等额本息还款法的数学模型是什么,为什么要这么推导?理论依据和公证性如何?
等额本息还款法:
每月应还金额:a*[i*(1+i)^n]/[(1+I)^n-1]
注:a贷款本金 i贷款月利率 n贷款月数
等额本息还款公式推导设贷款总额为A,银行月利率为β,总期数为m(个月),月还款额设为X,则各个月所欠银行贷款为:第一个月A 第二个月A(1+β)-X 第三个月(A(1+β)-X)(1+β)-X=A(1+β)2-X[1+(1+β)] 第四个月((A(1+β)-X)(1+β)-X)(1+β)-X =A(1+β)3-X[1+(1+β)+(1+β)2] … 由此可得第n个月后所欠银行贷款为 A(1+β)n –X[1+(1+β)+(1+β)2+…+(1+β)n-1]= A(1+β)n –X[(1+β)n-1]/β 由于还款总期数为m,也即第m月刚好还完银行所有贷款,因此有 A(1+β)m –X[(1+β)m-1]/β=0 由此求得 X = Aβ(1+β)m /[(1+β)m-1]
每月应还金额:a*[i*(1+i)^n]/[(1+I)^n-1]
注:a贷款本金 i贷款月利率 n贷款月数
等额本息还款公式推导设贷款总额为A,银行月利率为β,总期数为m(个月),月还款额设为X,则各个月所欠银行贷款为:第一个月A 第二个月A(1+β)-X 第三个月(A(1+β)-X)(1+β)-X=A(1+β)2-X[1+(1+β)] 第四个月((A(1+β)-X)(1+β)-X)(1+β)-X =A(1+β)3-X[1+(1+β)+(1+β)2] … 由此可得第n个月后所欠银行贷款为 A(1+β)n –X[1+(1+β)+(1+β)2+…+(1+β)n-1]= A(1+β)n –X[(1+β)n-1]/β 由于还款总期数为m,也即第m月刚好还完银行所有贷款,因此有 A(1+β)m –X[(1+β)m-1]/β=0 由此求得 X = Aβ(1+β)m /[(1+β)m-1]