在平行四边形ABCD中,做BC、CD边的高AE、AF,连接EF,O点是△AEF的垂心,连接AC,求证:AO^2+EF^2
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 20:40:41
在平行四边形ABCD中,做BC、CD边的高AE、AF,连接EF,O点是△AEF的垂心,连接AC,求证:AO^2+EF^2=AC^2
过E作EM⊥EF交AB于M.
∵O是△AEF的垂心,∴AO⊥EF,又EM⊥EF,∴AO∥ME.
∵O是△AEF的垂心,∴OE⊥AG,又AG⊥DC,∴OE∥DC.
∵ABCD是平行四边形,∴AB∥DC,∴AB∥OE.
由AO∥ME、AB∥OE,得:AOEM是平行四边形,∴AO=ME.
由勾股定理,有:FM^2=ME^2+EF^2=AO^2+EF^2.
∵O是△AEF的垂心,∴FO⊥AE,又CE⊥AE,∴FO∥CE,∴∠GOF=∠GEC.
∵AO∥ME,∴∠AOG=∠MEG.
∴∠GOF+∠AOG=∠GEC+∠MEG,∴AOF=∠MEC.
∵FO∥CE、OE∥FC,∴OECF是平行四边形,∴FO=CE.
由AO=ME、FO=CE、∠AOF=∠MEC,得:△AOF≌△MEC,∴AF=MC.
∵平行线间处处等距离,而AF是平行线AB、DC间的距离,∴MC也是AB、DC间的距离,
∴MC⊥FC.
由AM∥FC、AF⊥FC、MC⊥FC,得:AFCM是矩形,∴AC=FM.
∴AC^2=AO^2+EF^2.
∵O是△AEF的垂心,∴AO⊥EF,又EM⊥EF,∴AO∥ME.
∵O是△AEF的垂心,∴OE⊥AG,又AG⊥DC,∴OE∥DC.
∵ABCD是平行四边形,∴AB∥DC,∴AB∥OE.
由AO∥ME、AB∥OE,得:AOEM是平行四边形,∴AO=ME.
由勾股定理,有:FM^2=ME^2+EF^2=AO^2+EF^2.
∵O是△AEF的垂心,∴FO⊥AE,又CE⊥AE,∴FO∥CE,∴∠GOF=∠GEC.
∵AO∥ME,∴∠AOG=∠MEG.
∴∠GOF+∠AOG=∠GEC+∠MEG,∴AOF=∠MEC.
∵FO∥CE、OE∥FC,∴OECF是平行四边形,∴FO=CE.
由AO=ME、FO=CE、∠AOF=∠MEC,得:△AOF≌△MEC,∴AF=MC.
∵平行线间处处等距离,而AF是平行线AB、DC间的距离,∴MC也是AB、DC间的距离,
∴MC⊥FC.
由AM∥FC、AF⊥FC、MC⊥FC,得:AFCM是矩形,∴AC=FM.
∴AC^2=AO^2+EF^2.
在平行四边形ABCD中,对角线AC.BD相交于点O,BD=2ab,点e.f分别是OA.BC的中点.连接BE.EF 求证:
在平行四边形abcd中,对角线ac、bd相交于点O,bd=2ab,点e、f分别是oa、bc的中点,连接be、ef,求证:
如图,在菱形ABCD中,∠B=60°,AB=2,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长为(
如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为_
菱形ABCD中,∠B=60°,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长是
如图,菱形ABCD中,∠B=60°,AB=2CM,E.F分别是BC,CD中点,连接AE,EF,AF,求△AEF的周长?
1.如图,在菱形ABCD中,角B=60度,AB=2.E.F分别是BC.CD的中点.连接AE.EF.AF.求△AEF的周长
如图,平行四边形ABCD中,AE垂直BC,AF垂直CD,垂足分别为E、F,联结EF、AC 1.求证:三角形AEF~三角形
如图,棱形ABCD中,角B=60度,AB=2cm,E,F分别是BC,CD的中点,连接AE,EF,AF,求三角形AEF的周
已知:如图10,在正方形ABCD中,点E,F分别在BC和CD上,AE=AF.(1)求证:BE=DF(2)连接AC交EF于
如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是
在矩形ABCD中点E是DC边的中点EF垂直AE叫BC于点F连接AF求证三角形CEF与三角形EAF相似