作业帮 > 数学 > 作业

已知函数F(x)是定义在R上的奇函数,且当x>0时,f(x)是二次函数,满足条件F(0)=0,且F(x+1)=f(x)+

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 21:52:13
已知函数F(x)是定义在R上的奇函数,且当x>0时,f(x)是二次函数,满足条件F(0)=0,且F(x+1)=f(x)+x+1,求F(x)在R上的解析式
先求x>=0时函数式:设x>=0时 f(x)=ax^2+bx+c,因f(0)=0,故c=0由F(x+1)=f(x)+x+1得
f(x+1)=a(x+1)^2+b(x+1)=ax^2+(2a+b)x+a+b
f(x)+x+1=ax^2+bx +x+1 ax^2+(2a+b)x+a+b=ax^2+(b+1)x +1
比较系数得,a+b=1,b+1=2a+b求得a=b= 1/2
故x>=0时解析式为f(x)=0.5x^2+0.5x
另由奇函数条件得x