∫arcsin根号(x/1+x)dx
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 09:48:10
∫arcsin根号(x/1+x)dx
分步积分得∫arcsin{[x/(1+x)]^(1/2)}dx
=xarcsin{[x/(1+x)]^(1/2)}
-∫x/2[1-x/(x+1)]^(1/2)*[(x+1)/x]^(1/2)*dx/(x+1)^2
=xarcsin{[x/(x+1)]^(1/2)}-∫x^(1/2)/2(x+1) dx
=xarcsin{[x/(x+1)]^(1/2)}-∫t/2(t^2+1)*2tdt 设x=t^2
=xarcsin{[x/(x+1)]^(1/2)}-∫[1-1/(t^2+1)]dt
=xarcsin{[x/(x+1)]^(1/2)}-t+arctant+C
arctant=arcsin{[x/(x+1)]^(1/2)}
=(x+1)arcsin{[x/(x+1)]^(1/2)}-x^(1/2)+C
=xarcsin{[x/(1+x)]^(1/2)}
-∫x/2[1-x/(x+1)]^(1/2)*[(x+1)/x]^(1/2)*dx/(x+1)^2
=xarcsin{[x/(x+1)]^(1/2)}-∫x^(1/2)/2(x+1) dx
=xarcsin{[x/(x+1)]^(1/2)}-∫t/2(t^2+1)*2tdt 设x=t^2
=xarcsin{[x/(x+1)]^(1/2)}-∫[1-1/(t^2+1)]dt
=xarcsin{[x/(x+1)]^(1/2)}-t+arctant+C
arctant=arcsin{[x/(x+1)]^(1/2)}
=(x+1)arcsin{[x/(x+1)]^(1/2)}-x^(1/2)+C
∫(lnx)/根号(1+x) dx, ∫(arcsin根号x)/根号x dx, 求不定积分,求详细过程,答案看起来很复杂
∫(arcsin√x)/√(x-x^2)dx求不定积分 √代表根号
高数不定积分题一枚,∫ (arcsin√x)/(√x(1-x))dx 注:分母中x(1-x)均在根号内
求不定积分∫ x arcsin(x/2) dx
不定积分 ∫(0,1)arcsin√x/ √(1-x)dx 求助大神
求积分∫[arcsin√x/√(1-x)]dx
∫(arcsin√x)/(√1+x)dx 不定积分
求定积分.∫[0,1]arcsin√x dx=____
求arcsin根号下x/1+x的导数
求广义积分∫﹙0,1﹚arcsin√x dx/√[x﹙x-1﹚]
题是 ∫[1/√(x+x^2)]dx 答案是arcsin(2x-1)+C
x-9/[(根号)x]+3 dx ∫ x+1/[(根号)x] dx ∫ [(3-x^2)]^2 dx