作业帮 > 数学 > 作业

g(x)=-mx^3-3x^2+mx+1在x属于[0,2]上的最大值为1,求实数m的取值范围

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 13:29:26
g(x)=-mx^3-3x^2+mx+1在x属于[0,2]上的最大值为1,求实数m的取值范围
对函数g(x)=-mx^3-3x^2+mx+1求导
g(x)'=-3mx^2-6x+m
1)若m=0,则x=0时有极值
带入g(x)=-mx^3-3x^2+mx+1
满足最大值为1
2)若m0,要有最大值,则有
g(0)'