作业帮 > 数学 > 作业

数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 02:01:17
数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列.
这个应该不难.
设 an=a1+(n-1)d,其中d为数列{an}的公差,
代入可得
bn=[(a1+2a1+...+na1)+(1*2+2*3+...+(n-1)n)d]/(1+2+...+n) ,
由于 1*2+2*3+.+(n-1)n=(n-1)n(n+1)/3 ,1+2+.+n=n(n+1)/2 ,
因此 bn=[a1*n(n+1)/2+d(n-1)n(n+1)/3]/[n(n+1)/2]=a1+(n-1)*2d/3 ,
所以 {bn}是以 a1 为首项,2d/3 为公差的等差数列 .