∫∫zdxdy+xydydz 其中∑是柱面x^2+y^2=1被平面z=0及z=1所截得的在第一卦限内的前侧.
∫∫∫(xy)dxdydz ,其中Ω是由柱面x^2+y^2=1及平面z=1,z=0,x=0,y=0所围成的在第一卦限的闭
计算曲面积分如图其中曲面是柱面x^2+y^2=1被平面z=0和z=3所截得的在x》=0的部分,取外侧
高数积分求解答求积分:∫∫xdydz+y2dzdx+zdxdy,其中∑是平面x+y+z=1被三个坐标平面所截得的三角形区
用柱面坐标计算三重积分(Ω)∫∫∫xyzdy,其中Ω是柱面x^2+y^2=1与平面z=0与z=3所围成的面积
∫∫∫Ωxzdsdydz,其中Ω是由平面x=y,y=1,z=0及抛物柱面y=x^2所围成的闭区域
计算二重积分(y-z)x^2dzdx+(x+y)dxdy其中是柱面x^2+y^2=1及平面z=0
三重积分 求由柱面x=y^2,平面z=0及x+z=1所围成的立体
设∑是柱面x^2+y^2=9及平面z=0,z=3所围成的区域的整个边界曲面,计算∫∫(x^2+y^2)dS
求柱面(x-1)^2+(y-1)^2=1被平面z=0及曲面z=x^2+y^2所截得曲面面积A
30分!求柱面(x-1)^2+(y-1)^2=1被平面z=0及曲面z=x^2+y^2所截得曲面面积A
求柱面x^2+y^2=1,平面x+y+z=3及z=0围成立体的体积
曲面为锥面z=根号(x^2+y^2)与z=1所围立体的表面外侧,则∫∫xdydz+ydzdx+zdxdy=