作业帮 > 数学 > 作业

设正项数数列{an}的前n项和为Sn,并对于n∈N+,an与1的等差中项等 于√Sn,求数列{an}的通项公式.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:41:42
设正项数数列{an}的前n项和为Sn,并对于n∈N+,an与1的等差中项等 于√Sn,求数列{an}的通项公式.
对于n∈N+,an与1的等差中项等 于√Sn
2√Sn=an+1 平方一下
4Sn=(an+1)^2
4S(n-1)=(a(n-1)+1)^2
两式相减得
4Sn-4S(n-1)=4an=(an+1)^2-(a(n-1)+1)^2
4an=an^2+2an-a(n-1)^2-2a(n-1)
an^2-2an=a(n-1)^2+2a(n-1)
an^2-2an+1=a(n-1)^2+2a(n-1)+1
(an-1)^2=[a(n-1)+1]^2
an-1=a(n-1)+1 或 an-1=-a(n-1)-1
先看an-1=a(n-1)+1的情况
an-a(n-1)=2
∴数列(an)是等差数列,公差d=2
2√Sn=an+1
-->
2√S1=2√a1=a1+1
a1-2√a1+1=0
(√a1-1)^2=0
a1=1
an=a1+(n-1)d
=1+(n-1)*2
=2n-1
再看an-1=-a(n-1)-1
得an/a(n-1)=-1
∵都是正项
故舍去
∴an=2n-1