一到高考数学题)设函数f(x)=x/2+sinx的所有正的极小值点从小到大排成的数列为{xn}.(Ⅰ)求数
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 22:46:48
一到高考数学题)设函数f(x)=x/2+sinx的所有正的极小值点从小到大排成的数列为{xn}.(Ⅰ)求数
列{xn}的通项公式;
(Ⅱ)设的前项和为Sn,求sinSn.
标准答案f(x)=x/2 +
sin(x),
f'(x) = 1/2 + cos(x),令0=f'(x),有,-1/2 = cos(x),
x=2kπ+4π/3或x=2kπ-4π/3,k=0,1,-1,2,-2,...,n,-n,...
f''(x) = - sin(x),
x为极小值点,则-sin(x)=f''(x)>=0,因此,x=2kπ+4π/3,
k=0,1,-1,2,-2,...,n,-n,...
x(n)=2(n-1)π+4π/3,
s(n)=n(n-1)π+4nπ/3,
n=3m,
s(n)=3m(3m-1)π+4mπ,sin[s(n)] = sin(0)=0,n=3m,m=1,2,...
n=3m-1,
s(n)=(3m-1)(3m-2)π + 4(3m-1)π/3 = (3m-1)(3m-2)π + 4mπ - 4π/3,
sin[s(n)] =
sin(-4π/3)=sin(2π/3)=sin(π/3)=3^(1/2)/2,n=3m-1,m=1,2,...
n=3m-2,s(n) =
(3m-2)(3m-3)π +4(3m-2)π/3 = (3m-2)(3m-3)π + 4mπ - 8π/3,
sin[s(n)] =
sin(-8π/3)=sin(-2π/3)=-sin(2π/3)=-sin(π/3)=-3^(1/2)/2,
n=3m-2,m=1,2,...
综合,有,
n=3m-2时,sin[s(n)]=-3^(1/2)/2,
n=3m-1时,sin[s(n)]=
3^(1/2)/2,
n=3m时,sin[s(n)]=0,
m=1,2,...
为什么要设3m,3m-1……
列{xn}的通项公式;
(Ⅱ)设的前项和为Sn,求sinSn.
标准答案f(x)=x/2 +
sin(x),
f'(x) = 1/2 + cos(x),令0=f'(x),有,-1/2 = cos(x),
x=2kπ+4π/3或x=2kπ-4π/3,k=0,1,-1,2,-2,...,n,-n,...
f''(x) = - sin(x),
x为极小值点,则-sin(x)=f''(x)>=0,因此,x=2kπ+4π/3,
k=0,1,-1,2,-2,...,n,-n,...
x(n)=2(n-1)π+4π/3,
s(n)=n(n-1)π+4nπ/3,
n=3m,
s(n)=3m(3m-1)π+4mπ,sin[s(n)] = sin(0)=0,n=3m,m=1,2,...
n=3m-1,
s(n)=(3m-1)(3m-2)π + 4(3m-1)π/3 = (3m-1)(3m-2)π + 4mπ - 4π/3,
sin[s(n)] =
sin(-4π/3)=sin(2π/3)=sin(π/3)=3^(1/2)/2,n=3m-1,m=1,2,...
n=3m-2,s(n) =
(3m-2)(3m-3)π +4(3m-2)π/3 = (3m-2)(3m-3)π + 4mπ - 8π/3,
sin[s(n)] =
sin(-8π/3)=sin(-2π/3)=-sin(2π/3)=-sin(π/3)=-3^(1/2)/2,
n=3m-2,m=1,2,...
综合,有,
n=3m-2时,sin[s(n)]=-3^(1/2)/2,
n=3m-1时,sin[s(n)]=
3^(1/2)/2,
n=3m时,sin[s(n)]=0,
m=1,2,...
为什么要设3m,3m-1……
这是分类讨论,把n分成三类,即3m,3m-1和3m-2,因为s(n)=n(n-1)π+4nπ/3,n若为3的倍数,则4nπ/3为π的偶数倍,其sin值为0,所以为了方便计算把n按除以3得到的余数不同分成三类.
设函数f(x)=x分之2+Inx,求f(x)的极小值点
已知函数f(x)=ax^3+bx^2+4x的极小值为-8,其到函数y=f'(x)的图像经过点(-2,0) 求f(x)的解
已知函数f(x)=3x/(3+x),数列{Xn}中,Xn=f(Xn-1),若X1=1/2,求X100的值
已知f(x)=3x/x+3,在数列{xn}中,xn=f(xn-1).若x1=1/2,求x100的值
设函数f(x)=(2x+1)ln(2x+1),求f(x)的极小值
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*)
设函数f(x)定义如下表,数列{Xn}(满足X0=5,且对于任意的自然数n,均有Xn+1=f(Xn),求x2011
已知函数f(x)=3x/(x+3),数列Xn的通项由Xn=f(Xn-1)确定 求证{1/Xn}是等差数列.
设函数f(x)在R上可导,其导函数为f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图像可能是
设函数f(X)=ax3+bx2+cx的极小值为8其导数过点(-2,0)(2/3,0) a=m^2-14m恒成立,求函数m
设f(x)=ax^3+bx^2+cx的极小值为-8,其导函数y=f`(x)的图像经过点(-2,0)和点(2//3,0),
已知函数 f(x)=cosx•(sinx+cosx) .(1)求函数 的最小正周期;(2)设 g(x) =f