作业帮 > 数学 > 作业

一到高考数学题)设函数f(x)=x/2+sinx的所有正的极小值点从小到大排成的数列为{xn}.(Ⅰ)求数

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 22:46:48
一到高考数学题)设函数f(x)=x/2+sinx的所有正的极小值点从小到大排成的数列为{xn}.(Ⅰ)求数
列{xn}的通项公式;
(Ⅱ)设的前项和为Sn,求sinSn.
标准答案f(x)=x/2 +
sin(x),
f'(x) = 1/2 + cos(x),令0=f'(x),有,-1/2 = cos(x),
x=2kπ+4π/3或x=2kπ-4π/3,k=0,1,-1,2,-2,...,n,-n,...
f''(x) = - sin(x),
x为极小值点,则-sin(x)=f''(x)>=0,因此,x=2kπ+4π/3,
k=0,1,-1,2,-2,...,n,-n,...
x(n)=2(n-1)π+4π/3,
s(n)=n(n-1)π+4nπ/3,
n=3m,
s(n)=3m(3m-1)π+4mπ,sin[s(n)] = sin(0)=0,n=3m,m=1,2,...
n=3m-1,
s(n)=(3m-1)(3m-2)π + 4(3m-1)π/3 = (3m-1)(3m-2)π + 4mπ - 4π/3,
sin[s(n)] =
sin(-4π/3)=sin(2π/3)=sin(π/3)=3^(1/2)/2,n=3m-1,m=1,2,...
n=3m-2,s(n) =
(3m-2)(3m-3)π +4(3m-2)π/3 = (3m-2)(3m-3)π + 4mπ - 8π/3,
sin[s(n)] =
sin(-8π/3)=sin(-2π/3)=-sin(2π/3)=-sin(π/3)=-3^(1/2)/2,
n=3m-2,m=1,2,...
综合,有,
n=3m-2时,sin[s(n)]=-3^(1/2)/2,
n=3m-1时,sin[s(n)]=
3^(1/2)/2,
n=3m时,sin[s(n)]=0,
m=1,2,...
为什么要设3m,3m-1……
这是分类讨论,把n分成三类,即3m,3m-1和3m-2,因为s(n)=n(n-1)π+4nπ/3,n若为3的倍数,则4nπ/3为π的偶数倍,其sin值为0,所以为了方便计算把n按除以3得到的余数不同分成三类.