对于函数f(x),若存在x0使得f(x0)=x0成立,则称点(x0,x0)为函数f(x)的不动点.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 23:42:03
对于函数f(x),若存在x0使得f(x0)=x0成立,则称点(x0,x0)为函数f(x)的不动点.
(1)已知函数f(x)=ax2+bx-b(a≠0)有不动点(1,1)和(-3,-3),求a,b的值.
(2)若对于任意实数b,函数f(x)=ax2+bx-b总有两个相异的不动点,求a的范围.
(1)已知函数f(x)=ax2+bx-b(a≠0)有不动点(1,1)和(-3,-3),求a,b的值.
(2)若对于任意实数b,函数f(x)=ax2+bx-b总有两个相异的不动点,求a的范围.
(1)由题意
f(1)=1
f(−3)=−3,即
a+b−b=1
a(−3)2+b(−3)−b=−3,解的
a=1
b=3.
(2)函数f(x)=ax2+bx-b总有两个相异的不动点,
即关于x的方程f(x)=x有两个不等根.
化简f(x)=x得到ax2+(b-1)x-b=0.
所以(b-1)2+4ab>0,即b2+(4a-2)b+1>0.
由题意,该关于b的不等式恒成立,
所以(4a-2)2-4<0.解之得:0<a<1.
f(1)=1
f(−3)=−3,即
a+b−b=1
a(−3)2+b(−3)−b=−3,解的
a=1
b=3.
(2)函数f(x)=ax2+bx-b总有两个相异的不动点,
即关于x的方程f(x)=x有两个不等根.
化简f(x)=x得到ax2+(b-1)x-b=0.
所以(b-1)2+4ab>0,即b2+(4a-2)b+1>0.
由题意,该关于b的不等式恒成立,
所以(4a-2)2-4<0.解之得:0<a<1.
对于函数y=f(x),若存在x0,使得f(x0)=x0成立,则称x0为y=f(x)的不动点.
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点;已知f(x)=x2+bx+c.
对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的天宫一号点.已知函数f(x)=ax2+(
对于定义域是一切实数的函数f(x),若存在实数x0,使f(x0)=x0成立,则称x0为f(x0)的不动点.
对于函数f(x),若存在x0属于R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知函数f(x)=ax^2+
对于函数f(x),定义域为D,若存在x0∈D使f(x0)=x0,则称(x0,x0)为f(x)的图象上的不动点. 
对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x
对于函数f(x),若存在x0属于R,使f(x0)=x0成立,则称x0为f(x)的不动点,
对于函数y=f(x),若存在x0,使得f(x0)=x0成立,则称x0为y=f(x)的不动点.已知函数f(x)=ax*x+
对于函数f(x)=ax^2+(b+1)x+b+1(a≠0),若存在x0∈R使f(x0)=x0,则称x0为f(x)的不动点
对于定义域为R的函数f(x)若存在实数X0使f(X0)=X0则称x0是f(x)的一个不动点.
对于任意定义在区间D上的函数f(x),若实数x0∈D满足f(x0)=x0,则称x0为函数f(x)在D上的一个不动点.