设m={a,b,c},n={-1,0,1},若从m到n的映射f满足:f(a)+f(b)=f(c),求这样的映射f的个数.
设集合M={a,b,c},N={-2,0,2},从M到N的映射满足f(a)>f(b)>=f(c),试确定这样映射f的个数
高一映射习题设M={a,b,c},N{-1,0,1},从M到N的映射f满足f(a)>f(b)>=f(c),试确定这样的映
已知集合M={a,b,c},N={-1,0,1},映射f:M到N,满足f(a)+f(b)=f(c),求映射个数
设集合M={a,b,c},N={0,1},若映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为__
已知集合M={a,b,c},N={-1,0,1},从M到N的映射f满足f(a)+f(b)+f(c)=0,那么映射f的个数
已知集合M={a,b,c},N={-1,0,1},从M到N的映射f满足f(a)-f(b)=f(c),那么映射f的个数有几
集合M={a,b,c},N={-1,0,-1},从M到N的映射f满足关系式f(a)-f(b)=f(c),那么映射f的个数
集合M={a,b,c},N={-1,0,1}从M到N的映射f满足f(a)-f(b)=f( 1),那么映射f的个数是多少?
设集合M={a,b,c},N={-2,0,2},从M到N的映射满足f(a)>f(b)>f(c),求映射的个数
已知集合M={a,b,c},N={-2,0,2},从M到N的映射f满足f(a)>f(b)>=f(c),那么映射f的个数为
集合M={a,b,c}集合N{-1,0,1},由M到N的映射f满足f(a)+f(b)=f(c),这样的映射共有几个?
设集合M={a,b,c},N={-1,0,1}若从集合M到N得映射满足f(a)>f(b)大于等于f(c),则映射f:M→