抛物线Y=ax2+bx-4a过点A(-1.0).C(0.4)与x轴的另一交点为B.1.2..已
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 00:42:57
抛物线Y=ax2+bx-4a过点A(-1.0).C(0.4)与x轴的另一交点为B.1.2..已
①∵抛物线y=ax²+bx-4a经过A(-1,0)C(0,4)
∴把A点坐标代入抛物线方程得关于a、b的方程组:
a-b-4a=0
-4a=4
解得:a=-1,b=3
∴抛物线解析式为y=-x²+3x+4
②∵D(M,M+1)在第一象限的抛物线上
∴M+1=-M²+3M+4(M>0)
解得M=3 ∴D(3,4)
∵抛物线与x轴交于另一点B
∴B(4,0)∴直线BC方程:y=-x+4
∴点D关于直线BC对称点的坐标:(0,1)
③∴直线BD方程:y=-4x+16
∴由图:直线BD的倾斜角为π-arctan4
∴BP直线的倾斜角为:3/4π-arctan4
∴BP直线的方程为:y=5x/3-20/3
∴P(-8/3,-100/9)
∴把A点坐标代入抛物线方程得关于a、b的方程组:
a-b-4a=0
-4a=4
解得:a=-1,b=3
∴抛物线解析式为y=-x²+3x+4
②∵D(M,M+1)在第一象限的抛物线上
∴M+1=-M²+3M+4(M>0)
解得M=3 ∴D(3,4)
∵抛物线与x轴交于另一点B
∴B(4,0)∴直线BC方程:y=-x+4
∴点D关于直线BC对称点的坐标:(0,1)
③∴直线BD方程:y=-4x+16
∴由图:直线BD的倾斜角为π-arctan4
∴BP直线的倾斜角为:3/4π-arctan4
∴BP直线的方程为:y=5x/3-20/3
∴P(-8/3,-100/9)
已知抛物线y=ax2+bx+c与X轴交点的横坐标为-1,则a+b=
已知如图,抛物线y=ax2+bx+c过点B(3.0)且经过直线y=-3x-3与坐标轴的两个交点A,C
如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交点于C点,顶点为D
已知抛物线y=ax2+bx+c(a>0)与x轴的两个交点分别为A(-1,0),B(3,0),与y轴交点为点D,顶点为C
平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点
在平面直角坐标系中,抛物线y=ax2+bx+3与x轴的两个交点分别为A(-3,0)B(1,0),过顶点C作CH┴x轴于点
已知抛物线y=ax2+bx+c与x轴交于A、B点(A点在B点的左边),与y轴交点C的纵坐标为2.若方程x2+bax+ca
抛物线y=ax2+bx+c过点A(1,k)及A关于原点的对称点B,求证:它与X轴有两个交点,并求两交点横坐标的积
直线=-3X-3与X轴,Y轴分别相交C于点A、B经过点A、B两点的抛物线Y=ax平方+bx+c与X轴的另一交点为C,顶点
如图,直线y=-x+3与x轴、y轴分别相交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一交点为A,顶
抛物线y=ax2+bx-4a经过A(-1,0),C(0,4)两点,与x轴交与另一点B,求抛物线的解析式和B点坐标.
如图,已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,