若p,q为奇素数,q|(a∧p+1),则有q|(a+1)或q|2kp+1,其中k为某个整数
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 08:51:35
若p,q为奇素数,q|(a∧p+1),则有q|(a+1)或q|2kp+1,其中k为某个整数
求证该命题,求大神指导,拜谢
求证该命题,求大神指导,拜谢
首先有以下引理:
若正整数a,m,x,y满足m | a^x-1,m | a^y-1,设d = (x,y) (最大公约数),则m | a^d-1.
证明:由裴蜀定理,存在正整数u,v使ux-vy = d.
由m | a^x-1,有m | a^(ux)-1 = a^(vy+d)-1.
又由m | a^y-1,有m | a^(vy)-1,故m | a^(vy+d)-a^d.
相减即得m | a^d-1.
回到原题,由q | a^p+1,有q与a互素.
q是素数,由Fermat小定理有q | a^(q-1)-1.
又由q | a^p+1,有q | a^(2p)-1 = (a^p+1)(a^p-1).
设d = (2p,q-1),由引理得q | a^d-1.
由d是2p的约数,p为素数,故d = 1,2,p或2p.
若d = 1,有q | a-1,可得q | a^p-1,但q | a^p+1,于是q | 2,与q为奇素数矛盾.
若d = 2,有q | a^2-1 = (a+1)(a-1),而上面已证q不整除a-1,因此有q | a+1.
若d = p,有q | a^p-1,但q | a^p+1,同样得q | 2,与q为奇素数矛盾.
若d = 2p,由d = (2p,q-1) | q-1,得存在整数k使q-1 = 2kp,即q = 2kp+1.
综上,有q | a+1或存在整数k使q = 2kp+1.
若正整数a,m,x,y满足m | a^x-1,m | a^y-1,设d = (x,y) (最大公约数),则m | a^d-1.
证明:由裴蜀定理,存在正整数u,v使ux-vy = d.
由m | a^x-1,有m | a^(ux)-1 = a^(vy+d)-1.
又由m | a^y-1,有m | a^(vy)-1,故m | a^(vy+d)-a^d.
相减即得m | a^d-1.
回到原题,由q | a^p+1,有q与a互素.
q是素数,由Fermat小定理有q | a^(q-1)-1.
又由q | a^p+1,有q | a^(2p)-1 = (a^p+1)(a^p-1).
设d = (2p,q-1),由引理得q | a^d-1.
由d是2p的约数,p为素数,故d = 1,2,p或2p.
若d = 1,有q | a-1,可得q | a^p-1,但q | a^p+1,于是q | 2,与q为奇素数矛盾.
若d = 2,有q | a^2-1 = (a+1)(a-1),而上面已证q不整除a-1,因此有q | a+1.
若d = p,有q | a^p-1,但q | a^p+1,同样得q | 2,与q为奇素数矛盾.
若d = 2p,由d = (2p,q-1) | q-1,得存在整数k使q-1 = 2kp,即q = 2kp+1.
综上,有q | a+1或存在整数k使q = 2kp+1.
设P、Q为两个非空实数集,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q
设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q },若P={8,2,5),Q={1,4,7},则P
如果命题“p或q”和命题“p且q”都为真,那么则有(A)p真q假(B)p假q真(c)p真q假(D)p假q真
8.设P,Q为连个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则
若方程x²-3x+1=0两根为a、b也是方程x^6-px²+q=0的根,其中p、q为整数,求p、q的
设有两个命题,p:不等式x^2=1>a的解集为R;q:7-3a>1.若p或q为真命题,p且q为假命题,求实数a的取值范围
p.q均为质数,2p+1/q 及2q-3/p都是自然数.求p+q
若p,q,a均为整数,且p>q,(x+p)(x+q) = x^2 - ax - 8,求a的值
先化简再求值:(p+2q)^2-2(p+2q)(p+3q)+(p+2q)(3q-p),其中p=-1,q=-2
已知X²-(2K+1)+M=0的两根p与q为质数,且q/p+p/q=(6k+1)/3k,求整数k的值.
设P,Q为两个数集,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,
设P,Q为两个数集,P中含有0,2,5,三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P