初二数学 四边形
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 05:05:55
求详解,谢谢!
解题思路: 过P作PN⊥BC于N,过D作DM⊥BC于M,先证明四边形ABMD是矩形,从而得到AD=BM,再根据边与边之间的关系,列一元方程3t-21=3,得到t=8,即t=8秒时,梯形PQCD是等腰梯形.
解题过程:
解:过P作PN⊥BC于N,过D作DM⊥BC于M,
∵AD∥BC,∠B=90°,DM⊥BC,
∴四边形ABMD是矩形,AD=BM.
∴MC=BC-BM=BC-AD=3.
又∵QN=BN-BQ=AP-BQ=t-(21-2t)=3t-21.
若梯形PQCD为等腰梯形,则QN=MC=3.
得3t-21=3,t=8,
即t=8秒时,梯形PQCD是等腰梯形.
最终答案:略
解题过程:
解:过P作PN⊥BC于N,过D作DM⊥BC于M,
∵AD∥BC,∠B=90°,DM⊥BC,
∴四边形ABMD是矩形,AD=BM.
∴MC=BC-BM=BC-AD=3.
又∵QN=BN-BQ=AP-BQ=t-(21-2t)=3t-21.
若梯形PQCD为等腰梯形,则QN=MC=3.
得3t-21=3,t=8,
即t=8秒时,梯形PQCD是等腰梯形.
最终答案:略