函数奇偶性的问题,设f(x)是定义在对称区间(-l,l)上的任何函数,证明:(1)φ(x)=f(x)+f(-x)是偶函数
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 06:41:00
函数奇偶性的问题,
设f(x)是定义在对称区间(-l,l)上的任何函数,证明:
(1)φ(x)=f(x)+f(-x)是偶函数,φ(x)=f(x)-f(-x)是奇函数,
(2)定义在区间(-l,l)上的任何函数可以表示为一个偶函数与一个奇函数的和.
设f(x)是定义在对称区间(-l,l)上的任何函数,证明:
(1)φ(x)=f(x)+f(-x)是偶函数,φ(x)=f(x)-f(-x)是奇函数,
(2)定义在区间(-l,l)上的任何函数可以表示为一个偶函数与一个奇函数的和.
(1)φ(-x)=f(-x)+f(x)=φ(x),∴φ(x)=f(x)+f(-x)是偶函数
φ(-x)=f(-x)-f(x)=-φ(x),∴φ(x)=f(x)-f(-x)是奇函数
(2)奇函数:
(f(x)-f(-x))/2
偶函数:
(f(x)+f(-x))/2
两个函数之和:
(f(x)-f(-x))/2 + (f(x)+f(-x))/2 = f(x).
得证.
φ(-x)=f(-x)-f(x)=-φ(x),∴φ(x)=f(x)-f(-x)是奇函数
(2)奇函数:
(f(x)-f(-x))/2
偶函数:
(f(x)+f(-x))/2
两个函数之和:
(f(x)-f(-x))/2 + (f(x)+f(-x))/2 = f(x).
得证.
函数奇偶性的问题,设f(x)是定义在对称区间(-l,l)上的任何函数,证明:(1)φ(x)=f(x)+f(-x)是偶函数
设函数f(x)定义在(-l,l)上,证明:f(x)+f(-x)是偶函数,f(x)-f(-x)是奇函数
设f(x)是定义在对称区间(-l,l)上的函数,证明:定义在对称区间(-l,l)上的任意函数可表示为一个奇函数与一个偶函
设函数f(x)定义在(-l,l)上,证明:f(x)+f(-x)是偶函数,f(x)是奇函数
证明定义在对称区间(-l,l)内的任何函数f(x)必定可表示成偶函数H(x)与奇函数G(x)和的形式,且这种表示是唯一的
设函数f(x)定义在(-l,l)上,证明f(x)+f(-x)是偶函数.我不明白下面解答中的一步,请解析.
奇偶性的函数f(x)是定义在R上的偶函数,且f(x)=x(2-x),若f(x)在区间【1.2】上是减函数,则f(x)区间
证明:定义在对称区间(-L,L)上的任意函数f(x)均可表示为一个奇函数与一个偶函数之和,
设函数f(x)定义在(-L,L)上,证明:f(x)+f(-x)是偶函数,f(x)-f(-x)是奇函数.
设定义在R上的偶函数f(x)满足f(x+2)=f(x),f'(x)是f(x)的导函数,当x属于0到1时闭区间,0≤f(x
设函数f(x)是定义在R上的函数,证明:1、|f(x)|=f(x)sgn[f(x)].2、f(x)等于一个奇函数与偶函数
定义在R上的函数f(x)是偶函数,且f(x)=f(x)在区间[1,2]上是减函数,问:对称轴为什么是1?