作业帮 > 数学 > 作业

已知△ABC中,sinAcosB-sinB=sinC-sinAcosC,若S△ABC=6且a-2b+c=0,求a,b,c

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 15:27:00
已知△ABC中,sinAcosB-sinB=sinC-sinAcosC,若S△ABC=6且a-2b+c=0,求a,b,c.
由第一个条件得到:sin(B+C)=sinA=[sinB+sinC]/[cosB+cosC]
=[2sin((B+C)/2)cos((B-C)/2)]/[2cos ((B+C)/2)cos((B-C)/2)]
化简得到:[cos(B+C)/2]^2=0.5,所以得到A=90度,
于是得到方程组:0.5bc=6;
c^2+b^2=a^2;
a-2b+c=0;
解得:a=5,b=4,c=3 完毕!
附:这道题只需要把第一个条件用和差化积公式变形下,再结合后面2个条件即可.嘿嘿,第一次回答问题,不足请指正~