作业帮 > 物理 > 作业

胡克定律的意义是什么

来源:学生作业帮 编辑:作业帮 分类:物理作业 时间:2024/11/06 07:43:03
胡克定律的意义是什么
胡克定律是力学基本定律之一.适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比.这个定律是英国科学家胡克发现的,所以叫做胡克定律.
胡克定律的表达式为F=-kx或△F=-K△X,其中k是常数,是物体的劲度(倔强)系数.在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米.倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力
弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一.在现代,仍然是物理学的重要基本理论.胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x成正比,即F= -kx.k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反.
为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体.
胡克定律
Hook's law
材料力学和弹性力学的基本规律之一.由R.胡克于1678年提出而得名.胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中 E为常数,称为弹性模量或杨氏模量.把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律.胡克定律为弹性力学的发展奠定了基础.各向同性材料的广义胡克定律有两种常用的数学形式:
σ11=λ(ε11+ε22+ε33)+2Gε11,σ23=2Gε23,
σ22=λ(ε11+ε22+ε33)+2Gε22,σ31=2Gε31,(1)
σ33=λ(ε11+ε22+ε33)+2Gε33,σ12=2Gε12,及
式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模 量;E为弹性模量(或杨氏模量);v为泊松比.λ、G、E和v之间存在下列联系:式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题.
根据无初始应力的假设,(f 1)0应为零.对于均匀材料,材料性质与坐标无关,因此函数 f 1 对应变的一阶偏导数为常数.因此应力应变的一般关系表达式可以简化为
上述关系式是胡克(Hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律.
广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个.
如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,Cmn 是坐标x,y,z的函数.
但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力.
这一条件反映在广义胡克定理上,就是Cmn 为弹性常数.
胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x成正比,即f= -kx.k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反.
各向同性材料的广义胡克定律有两种常用的数学形式:
σ11=λ(ε11+ε22+ε33)+2Gε11,σ23=2Gε23,
σ22=λ(ε11+ε22+ε33)+2Gε22,σ31=2Gε31,(1)
σ33=λ(ε11+ε22+ε33)+2Gε33,σ12=2Gε12,
及式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模 量;E为弹性模量(或杨氏模量);v为泊松比.λ、G、E和v之间存在下列联系:式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题 .
弹簧的串并联问题
串联:劲度系数关系1/k=1/k1+1/k2
并联:劲度系数关系k=k1+k2
注:弹簧越串越软,越并越硬
郑玄-胡克定律
它是由英国力学家胡克(Robert Hooke,1635-1703) 于1678年发现的,实际上早于他1500年前,东汉的经学家和教育家郑玄(公元127-200)为《考工记·马人》一文的“量其力,有三钧”一句作注解中写到:“假设弓力胜三石,引之中三尺,驰其弦,以绳缓擐之,每加物一石,则张一尺.”以正确地提示了力与形变成正比的关系,郑玄的发现要比胡克要早一千五百年.因此胡克定律应称之为“郑玄——胡克定律.”