作业帮 > 数学 > 作业

设向量OP=(cosα,2sinα),向量OQ=(sinα,-2cosα),求向量PQ的模的取值范围

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 04:11:13
设向量OP=(cosα,2sinα),向量OQ=(sinα,-2cosα),求向量PQ的模的取值范围
|PQ|^2=|OP-OG|^2
=(cosa-sina)^2+(2sina+2cosa)^2
=1-2sinacosa+4+8sinacosa
=5+6sinacosa
=5+3sin2a
|PQ|^2最大是5+3=8,最小是5-3=2
2^(1/2)