若椭圆b^2x^2+a^2y^2=a^2b^2(a>b>0)的两个焦点为F1,F2,P为椭圆上的一点,∠F1PF2=阿尔
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 01:47:20
若椭圆b^2x^2+a^2y^2=a^2b^2(a>b>0)的两个焦点为F1,F2,P为椭圆上的一点,∠F1PF2=阿尔法,则三角形F1PF2的面积等于b^2tan(阿尔法/2).类比椭圆这一结论,若双曲线b^2x^2-a^2y^2=a^2b^2(a>0,b>0)的两个焦点为F1,F2,P为双曲线上的一点,∠F1PF2=阿尔法,则三角形F1PF2的面积等于?
^2cot(α/2)
椭圆的焦点三角形推导
对于焦点△F1PF2,设∠F1PF2=θ,PF1=m,PF2=n
则m+n=2a
在△F1PF2中,由余弦定理:
(F1F2)^2=m^2+n^2-2mncosθ
即4c^2=(m+n)^2-2mn-2mncosθ=4a^2-2mn(1+cosθ)
所以mn(1+cosθ)=2a^2-2c^2=2b^2
所以mn=2b^2/(1+cosθ)
S=(mnsinθ)/2.(正弦定理的三角形面积公式)
=b^2*sinθ/(1+cosθ)
=b^2*[2sin(θ/2)cos(θ/2)]/2[cos(θ/2)]^2
=b^2*sin(θ/2)/cos(θ/2)
=b^2*tan(θ/2)
类比双曲线时
(F1F2)^2=m^2+n^2-2mncosθ
即4c^2=(m-n)^2+2mn-2mncosθ=4a^2-2mn(1-cosθ) 此处注意与椭圆的区别
S=(mnsinθ)/2
半角公式 cot(θ/2)=(1-cosθ)/sinθ
代入即得 b^2cot(α/2)
椭圆的焦点三角形推导
对于焦点△F1PF2,设∠F1PF2=θ,PF1=m,PF2=n
则m+n=2a
在△F1PF2中,由余弦定理:
(F1F2)^2=m^2+n^2-2mncosθ
即4c^2=(m+n)^2-2mn-2mncosθ=4a^2-2mn(1+cosθ)
所以mn(1+cosθ)=2a^2-2c^2=2b^2
所以mn=2b^2/(1+cosθ)
S=(mnsinθ)/2.(正弦定理的三角形面积公式)
=b^2*sinθ/(1+cosθ)
=b^2*[2sin(θ/2)cos(θ/2)]/2[cos(θ/2)]^2
=b^2*sin(θ/2)/cos(θ/2)
=b^2*tan(θ/2)
类比双曲线时
(F1F2)^2=m^2+n^2-2mncosθ
即4c^2=(m-n)^2+2mn-2mncosθ=4a^2-2mn(1-cosθ) 此处注意与椭圆的区别
S=(mnsinθ)/2
半角公式 cot(θ/2)=(1-cosθ)/sinθ
代入即得 b^2cot(α/2)
若椭圆b^2x^2+a^2y^2=a^2b^2(a>b>0)的两个焦点为F1,F2,P为椭圆上的一点,∠F1PF2=阿尔
椭圆x^2/a^2 +y^2/b^2 =1 (a>b>0)的两焦点分别为F1.F2,若椭圆上存在一点P使得∠F1PF2=
已知F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P为椭圆上一点,且角F1PF2=90度,
已知椭圆x/a+y/b=1 上一点P,F1、F2为椭圆焦点,若∠F1PF2=θ,求证:S△F1PF2=b*tanθ/2
f1,f2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)两焦点,P为椭圆上一点,角F1PF2=90度,求离心率的
椭圆x^2/a^2+y^2/b^2=1(a>b>0)左,右焦点分别为F1、F2,P是椭圆上一点,角F1PF2=60度..
椭圆x^2/a^2+y^/b^2=1 (a>b>0)的焦点F1,F2,椭圆上存在点P,使角F1PF2为钝角,求e的范围
以椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点F1作x轴的垂线与椭圆交于点P,F2为右焦点,角F1PF2
已知F1,F2为椭圆x^2/100+y^2/b^2=1(0<b<10)的左右焦点,P是椭圆上一点.若∠F1PF2=60°
F1和F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的焦点,P是椭圆上一点,且角F1PF2=90度,求三角形
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点p(3,4),F1、F2为椭圆的两个焦点,且满足PF1⊥P
高中解析几何椭圆一题F1 F2是椭圆的x^2/a^2+y^2/b^2=1的两个焦点(a>b>0)P为椭圆上一动点,M为P