a,b,c为正实数,a^2+b^2+c^2=9,求证abc+1>3a
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 22:47:43
a,b,c为正实数,a^2+b^2+c^2=9,求证abc+1>3a
正确的题应该是:设正实数a、b、c,满足a≤b≤c,且a^2+b^2+c^2=9.证明:abc+1>3a
证明:因为2bc=b^2+c^2-(c-b)^2,所以在a固定的时候(c-b)^2越大则bc越小,因为a≤b≤c,所以当b=a,c²=9-2a²时bc有最小值,即bc≥a√9-2a²,于是abc+1≥1+a²√9-2a²,若a√9-2a²≥3,则abc+1≥1+a²√9-2a²≥1+3a>3a,命题显然成立,若a√9-2a²<3,即a²(9-2a²)<9,则a²>3或a²<3/2,但9=a²+b²+c²≥3a²,即有a²≤3,于是只能取a²<3/2,于是√9-2a²>√6,于是abc+1≥1+a²√9-2a²>1+√6a²≥2*[(6)^1/4]a>3a(因为96>81),即a√9-2a²<3时命题也成立,于是命题成立,证毕.
证明:因为2bc=b^2+c^2-(c-b)^2,所以在a固定的时候(c-b)^2越大则bc越小,因为a≤b≤c,所以当b=a,c²=9-2a²时bc有最小值,即bc≥a√9-2a²,于是abc+1≥1+a²√9-2a²,若a√9-2a²≥3,则abc+1≥1+a²√9-2a²≥1+3a>3a,命题显然成立,若a√9-2a²<3,即a²(9-2a²)<9,则a²>3或a²<3/2,但9=a²+b²+c²≥3a²,即有a²≤3,于是只能取a²<3/2,于是√9-2a²>√6,于是abc+1≥1+a²√9-2a²>1+√6a²≥2*[(6)^1/4]a>3a(因为96>81),即a√9-2a²<3时命题也成立,于是命题成立,证毕.
a,b,c为正实数,a^2+b^2+c^2=9,求证abc+1>3a
设a,b,c为正实数,求证1/a+1/b+1/c+abc≥2√3
设a,b,c,属于正实数,求证a/(b+c)+b/(c+a)+c/(a+b)>=2/3
已知abc为正实数,a+b+c=1 求证 √3a+2 +√3b+2 +√3c+2≤6
已知abc为正实数,求证2/a+b+2/b+c+2/c+a≥9/a+b+c
设a,b,c为正实数,求证:a^4+b^4+c^4>=a^2b^2+b^2c^2+c^2a^2>=abc(a+b+c).
数学不等式求证题设a,b,c均为正实数,求证(1/2a)+(1/2b)+(1/2c)>=(1/(b+c))+(1/(c+
a,b,c属于正实数,已知a/(1+a)+b/(1+b)+c/(1+c)=1,求证:a+b+c大于等于3/2
abc为正实数,求证sqr(a^2+b^2)+sqr(b^2+c^2)+sqr(c^2+a^2)>=sqr(2)(a+b
设abc都是正实数,求证a^3+b^3+c^3≥1/3(a^2+b^2+c^2)(a+b+c)
已知正实数a,b,c满足abc=1,求证1/a^2+1/b^2+1/c^2≥a+b+c
设abc为正实数,求证:a+b+c