作业帮 > 数学 > 作业

在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q.求证:AB+BP=

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 18:48:39
在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q.求证:AB+BP=BQ+AQ
证明:
做辅助线PM‖BQ,与QC相交与M.
(首先算清各角的度数)
∵∠APB=180°—∠BAP—∠ABP=180°—30°—80°=70°
且∠APM=180°—∠APB—∠MPC=180°—70°—∠QBC(同位角相等)=180°—70°—40°=70°
∴∠APB=∠APM
又∵AP是BAC的角平分线,
∴∠BAP=∠MAP
AP是公共边
∴△ABP≌△AMP(角边角)
∴AB=AM,BP=MP
在△MPC中,∠MCP=∠MPC=40°
∴MP=MC
∴AB+BP=AM+MP=AM+MC=AC
在△QBC中
∵∠QBC=QCB=40°
∴BQ=QC
∴BQ+AQ=AQ+QC=AC
∴BQ+AQ=AB+BP