已知椭圆X^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1(-c,0),F
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:13:20
已知椭圆X^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1(-c,0),F2(c,0),Q是椭圆外的动点.
且满足|F1Q|=2a.点P事线段F1Q与椭圆的交点,点T在线段F2Q上,且满足PT垂直TF2,TF2不等于0.求 点T的轨迹方程.
且满足|F1Q|=2a.点P事线段F1Q与椭圆的交点,点T在线段F2Q上,且满足PT垂直TF2,TF2不等于0.求 点T的轨迹方程.
你可以先在纸上画个图.
首先容易知道,Q的轨迹是一个半径2a,圆心在F1的圆.连接PF2
由于P在椭圆上,有PF1+PF2=2a,又F1Q=PF1+F1Q=2a,得到PQ=PF2,
这意味着在等腰三角形PF2Q中垂直于F2Q的PT是QF的中线!,即QT=F2T.
现在取坐标原点O的与T的连线,再连接F1F2,那么在三角形QF1F2中,T平分FQ,O平分F1F2,所以TO=QF1/2=a.换言之,T到坐标原点O的距离为a,于是T的方程是x^2+y^2=a^2
首先容易知道,Q的轨迹是一个半径2a,圆心在F1的圆.连接PF2
由于P在椭圆上,有PF1+PF2=2a,又F1Q=PF1+F1Q=2a,得到PQ=PF2,
这意味着在等腰三角形PF2Q中垂直于F2Q的PT是QF的中线!,即QT=F2T.
现在取坐标原点O的与T的连线,再连接F1F2,那么在三角形QF1F2中,T平分FQ,O平分F1F2,所以TO=QF1/2=a.换言之,T到坐标原点O的距离为a,于是T的方程是x^2+y^2=a^2
已知椭圆X^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1(-c,0),F
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),F1、F2分别为椭圆的左右焦点,A为椭圆的上顶点,
已知椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别为F1、F2,离心率e=12,直线y=x+2经
已知F1,F2是椭圆x^2/a^2=1(a>b>0)的左右焦点,点P(1,)在椭圆上,线段PF2与y轴
已知ABC均在椭圆M:x^2/a^2+y^2=1(a>1)上,直线AB,AC分别是椭圆的左右焦点F1,F2,当向量
一直双曲线x^2/a^2 - y^2/b^2 =1(a>0,b>0)的左右焦点F1、F2,点Q为双曲线上一点
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1(-C,0),F2(C,0),Q是椭圆外的动
已知F1,F2分别是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,直线x=a^2/c[注:c=√(
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,F1,F2分别为椭圆C的左右焦点,若椭圆C
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),F1,F2分别是椭圆的左右焦点,如果在椭圆上存在一点M(x,y
已知椭圆x^2/a^2+y^2/b^2=1(a>b>c>0)的左右焦点分别为F1.F2,过椭圆上一点P作圆F2:(x-c
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>0,b>0)的左右焦点