定义域与函数奇偶性在高数课本中,判断一个函数是否为奇偶函数主要是根据定义去判断,好像跟定义域没有多大关系是的?
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 17:03:05
定义域与函数奇偶性
在高数课本中,判断一个函数是否为奇偶函数主要是根据定义去判断,好像跟定义域没有多大关系是的?
在高数课本中,判断一个函数是否为奇偶函数主要是根据定义去判断,好像跟定义域没有多大关系是的?
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数.
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数.
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数.
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图象的特征:
定理 奇函数的图象关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形.
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增.
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减.
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数.
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数.
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数.
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图象的特征:
定理 奇函数的图象关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形.
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增.
偶函数 在某一区间上单调递增,则在它的对称区间上单调递减.
定义域与函数奇偶性在高数课本中,判断一个函数是否为奇偶函数主要是根据定义去判断,好像跟定义域没有多大关系是的?
在奇偶函数中如何判断定义域是否关于原点对称?
高中文数 函数定义域为R的函数,1.y=2sinx.判断该函数的奇偶性 2.y=cos2x(x属于R),判断该函数的奇偶
怎样判断奇偶函数的定义域是否关于原点对称.
判断函数奇偶性之前整么看一个函数定义域是否关于原点对称?
判断下列函数的奇偶性并加以证明,写出定义域,以及判断是否与原点对称
编制判断奇偶数的Function函数:输入一个整数,判断其奇偶性.
定义一个函数,判断数x是否为回文数,如果是则返回1,否则返回0.在主函数中调用该函数,求
求函数的奇偶性时得先判断定义域是否关于原点对称,那么请问这个函数怎么判断定义域为R?
如何判断函数的奇偶性能举一个定义域不关于原点对称的函数吗?那么函数f(x)=x(|x|-1) (小于或等于3)的奇偶性是
判断函数是否具有奇偶性一定要先判断函数的定义域吗 .如果定义域是全体实数R的话.该怎么办?
为什么判断函数奇偶性要求函数的定义域,看其是否关于原点对称?